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Abstract— We address the risk bounded trajectory optimiza-
tion problem of stochastic nonlinear robotic systems. More
precisely, we consider the motion planning problem in which
the robot has stochastic nonlinear dynamics and uncertain
initial locations, and the environment contains multiple dynamic
uncertain obstacles with arbitrary probabilistic distributions.
The goal is to plan a sequence of control inputs for the
robot to navigate to the target while bounding the probability
of colliding with obstacles. Existing approaches to address
risk bounded trajectory optimization problems are limited to
particular classes of models and uncertainties such as Gaussian
linear problems. In this paper, we deal with stochastic nonlinear
models, nonlinear safety constraints, and arbitrary probabilistic
uncertainties, the most general setting ever considered. To
address the risk bounded trajectory optimization problem,
we first formulate the problem as an optimization problem
with stochastic dynamics equations and chance constraints. We
then convert probabilistic constraints and stochastic dynamics
constraints on random variables into a set of deterministic
constraints on the moments of state probability distributions.
Finally, we solve the resulting deterministic optimization prob-
lem using nonlinear optimization solvers and get a sequence
of control inputs. To our best knowledge, it is the first time
that the motion planning problem to such a general extent
is considered and solved. To illustrate the performance of the
proposed method, we provide several robotics examples.

I. INTRODUCTION

In order to bring robots into everyday life, it is critical to
plan trajectories for robots to navigate safely in uncertain
environments. However, the motion planning problem in
dynamic environments is computationally hard even in its
simplest form [1]. In this paper, we consider the motion
planning problem to its most generality, where the envi-
ronment contains multiple dynamic uncertain obstacles with
arbitrary probabilistic distributions and the robot itself has
nonlinear stochastic dynamics and uncertain initial locations.
Our goal is to plan a sequence of control inputs for the robot
to navigate to the target, while bounding the probability of
colliding with obstacles.

Standard motion planning algorithms, such as rapidly
exploring random tree (RRT), probabilistic roadmap (PRM),
and virtual potential field methods, plan safe trajectories
under environments with deterministic obstacles [2, 3]. Plan-
ning algorithms under uncertainties usually plan trajectories
that have bounded probability of collision with obstacles.
Existing planning algorithms under probabilistic uncertain-
ties are mainly limited to Gaussian uncertainty and convex
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obstacles [4, 5, 6, 7, 8, 9, 10] or rely on sampling to
estimate the probabilistic safety constraints [11, 12, 13, 14].
For example, [4] proposes a variant of the RRT planning
algorithm that plans a provably safe path for robots under
obstacles with Gaussian uncertainty without considering the
dynamical constraints. Also, [7, 8, 9] use convex obstacles,
while [10] assumes the feasible state space is a convex
polytope. Some authors [5, 6, 7, 8, 9, 10] consider system
dynamics in planning under uncertainty. For example, [5]
assumes deterministic system dynamics, while [6, 7, 8, 9, 10]
consider linearized system dynamics with Gaussian uncer-
tainty.

Methods that do not make Gaussian assumptions are
usually based on sampling. For example, [11] approximates
the distribution of the system state using a finite number
of particles. [12] proposes a variance-reduced Monte Carlo
probability estimation algorithm for path collision probability
computation. [13, 14] use the scenario approach in which
they sample the constraints to obtain a standard convex
optimization problem (the scenario problem) whose solution
is approximately feasible for the original set of constraints.
Sampling approaches can be computationally inefficient and
do not guarantee to satisfy the probabilistic constraints.

Recently, moment-based approaches, such as [15, 16,
17, 18, 19, 20], use higher order statistics of probability
distributions to plan safe trajectories and verify probabilistic
constraints without making the Gaussian uncertainty and/or
convex obstacle assumptions. For example, [15] uses analytic
inequalities to bound the risk of collision, converting the
chance constraints to constraints on moments of proba-
bilities. It then uses standard motion planning algorithms,
such as RRT, aided by sum-of-squares (SOS) verification to
plan safe trajectories using convex optimization. However,
[15] does not consider system dynamics. [16] uses similar
concentration inequalities to relax the chance constraints
and solves relaxed nonconvex trajectory optimization using
nonlinear solvers, but it considers convex obstacles and
does not assume uncertainties in system dynamics or initial
positions.

When considering stochastic dynamical systems, in or-
der to describe the uncertainty of system states over the
planning horizon, the problem of uncertainty propagation
arises. For linear systems with Gaussian noise, one can
use the prediction step of the Kalman filter for uncertainty
propagation [21]. Similarly, the extended Kalman filter [22]
and the unscented Kalman filter [23] generalize uncertainty
propagation of the Kalman filter to nonlinear systems with
Gaussian noise by considering linearized models and samples
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of uncertainties (sigma points), respectively. When dealing
with nonlinear systems with non-Gaussian noise, Monte
Carlo-based methods, such as particle filter [24, 25], are
commonly used. These methods use a set of particles to
represent and propagate uncertainties. However, they are
computationally expensive and non-deterministic.

Recently, [26] addresses the exact uncertainty propagation
problem for nonlinear systems with non-Gaussian noise
based on moments of the probability distributions. The
method is able to compute polynomial, trigonometric, and
mixed-trigonometric-polynomial moments up to any desired
order over the planning horizon. We will apply this method to
our optimization, converting stochastic dynamics constraints
into deterministic constraints on moments.

In this paper, we consider the motion planning problem
to its most generality. We consider the following setting:
(1) The system dynamics is nonlinear and stochastic, and
the uncertainty is not necessarily Gaussian; (2) The initial
position of the system is uncertain and does not necessarily
have Gaussian distribution; (3) The obstacle can be of
arbitrary shape, can deform over time, can move, and has
arbitrary uncertainty. We propose a novel approach to address
the risk bounded trajectory optimization problem in this
general setting. We first formulate the planning problem as an
optimization problem with stochastic dynamics constraints
and chance constraints. We then convert the optimization
problem into a standard nonlinear optimization problem
by converting chance constraints and stochastic dynamics
constraints into deterministic constraints on moments. We
solve the resulting nonconvex optimization in the variable
of moments using nonlinear optimization solvers to obtain
a sequence of control inputs that steer the system to the
target region. To our best knowledge, it is the first time
that the motion planning problem to such a general extent
is considered and solved. We demonstrate our method on
several robotics examples.

II. PROBLEM DEFINITION

Let X ⊆ Rn be the state space and U ⊆ Rm be the control
input space, where n,m ∈ N+. The system dynamics is

xt+1 = f(xt,ut, ωt) (1)

where x ∈ X ,u ∈ U are the state and control input at the
current time step, respectively, and ω is the disturbance with
known probability distribution, not necessarily Gaussian.
The initial state x0 is a random variable with some known
probability distribution. The obstacles are denoted by Oi, i =
1, . . . ,M , where M ∈ N+, and each obstacle Oi can be
represented by polynomials

Oi(w̃i, t) = {x ∈ X : pi(x, ω̃i, t) ≤ 0}, i = 1, ...,M (2)

where pi is a polynomial and ω̃i is a random variable with
some known probability distribution. The time variable t in
the polynomial pi indicates that the obstacle can change its
position and shape over time. We define the risk to be the
probability of collision with any uncertain obstacles at any
time step, and the probability of not reaching the goal region

xgoal ⊆ X at the final time step. The goal of risk bounded
trajectory optimization is to find a sequence of control inputs
u0, . . . , uT−1 over the time horizon T ∈ N+ to minimize the
cost function and bound the risk. More precisely, the risk
bounded trajectory optimization problem can be formulated
as the following probabilistic optimization:

Problem 1. Risk Bounded Trajectory Optimization

min
u

E[lf (xT ) +

T−1∑
t=0

l(xt,ut, ωt)]

s.t. xt+1 = f(xt,ut, ωt), |T−1
t=0 ,

Prob(xt ∈ Oi(ω̃i, t)) ≤ ∆, |T−1
t=0 , |Mi=1

Prob(xT 6∈ xgoal) ≤ ∆goal,

x0 ∼ pr(x0)

(3)

where Prob(xt ∈ Oi(ω̃i, t)) and Prob(xT 6∈ xgoal) are risks,
∆,∆goal ∈ [0, 1] are the given acceptable risk levels, and
pr(x0) is the given probability distribution of the initial
system states.

In this paper, we will use moments of probability distribu-
tions to represent uncertainties and convert the probabilistic
trajectory optimization problem into a deterministic opti-
mization problem.

A. Notations and Definitions

Let R[x] be the ring of polynomials in the variables x =
(x1, . . . , xn) with real coefficients. A polynomial p(x) ∈
R[x] can be written as p(x) =

∑
α∈Nn pαx

α, where α =
(α1, . . . , αn) ∈ Nn and xα =

∏n
i=1 x

αi
i is a monomial in

standard basis.
Let (Ω,Σ, µ) be a probability space, where Ω is the sample

space, Σ is the σ-algebra of Ω, and µ : Σ → [0, 1] is
the probability measure on Σ. Suppose x ∈ Ω ⊆ Rn is
an n-dimensional random vector. Let α = (α1, . . . , αn) ∈
Nn. The expectation of xα defined as mα = E[xα] is a
moment of order α, where α =

∑
i αi. The sequence of all

moments of order α, denoted by mα, is the expectation of all
monomials of order α sorted in graded reverse lexicographic
order (grevlex). For example, the sequence of moments
of order α = 3 of random vector x ∈ R2 is m3 =
[m3,0,m2,1,m1,2,m0,3] = [E[x3

1],E[x2
1x2],E[x1x

2
2],E[x3

2]].
We will use characteristic functions and trigonometric

functions to describe the moments of nonlinear functions of
the motion dynamics [26]. For any random variable x with
a probability density function, the characteristic function
always exists and is defined as

Φx(t) = E[eit
>x] (4)

Trigonometric polynomials of order n are defined as p(x) =∑n
k=0 ak cos(kx) + bk sin(kx), where ak, bk ∈ R, k =

0, . . . , n are the constants. Mixed trigonometric polynomials
are defined as p(x) =

∑n
k=0 akx

bk cosck(x) sindk(x), where
ak ∈ R and bk, ck, dk ∈ N, k = 0, . . . , n are constants.



III. METHOD

Our method consists of three steps. First, we replace the
chance constraints with a set of deterministic constraints in
terms of the moments of the state probability distributions.
Any state probability distribution whose moments satisfy the
obtained deterministic constraints is guaranteed to satisfy
the chance constraints of the planning problem. The second
step is the uncertainty propagation where we replace the
stochastic dynamics equation constraints by moment prop-
agation equation constraints. This allows us to describe the
moments of the state probability distributions at each time
step in terms of the control inputs. The first two steps turn
the chance constrained optimization problem into a nonlinear
deterministic optimization problem. Finally, we solve the
resulting nonlinear optimization problem using the off-the-
shelf nonlinear optimization solvers.

A. Chance Constraints
In this section, we use the notion of risk contours to

transform the probabilistic safety constraints of the planning
problem in to a set of deterministic constraints in terms of the
moments of the state probability distributions. In [27, 15, 17],
we define the risk contour as the set of all states whose prob-
ability of collision with the uncertain obstacle is bounded
by ∆. In this paper, given that states of the autonomous
system are also uncertain, we define the moment-based
risk contour as the set of all moments whose probability
distribution satisfies the probabilistic safety constraint. More
precisely, we define the moment-based risk contour at time
t with respect to the moments of the uncertain state and the
uncertain obstacle as follows:

M∆
ri(t) := { mα(t)|2dα=0 : Prob(xt ∈ Oi(ω̃, t)) ≤ ∆} |Mi=1

(5)
where, mα(t)|2dα=0 are the moments of order α = 0, ..., 2d
of the uncertain state xt. To construct the moment-based
risk contour, we replace the probabilistic constraint, i.e.,
Prob(xt ∈ Oi(ω̃, t)) = Prob(pi(xt, w̃i, t) ≤ 0) ≤ ∆, with a
deterministic constraint in terms of the moments of state xt.
In this paper, we provide an analytical method as follows:

Given the polynomial pi(x, w̃i, t) of the uncertain obstacle
Oi(ω̃, t), we define the set M̂∆

ri(t), i = 1, ...,M as follows:

M̂∆
ri(t) := mα(t)|2dα=0 :

4
9
E[p2i (x,ω̃i,t)]−E[pi(x,ω̃i,t)]

2

E[p2i (x,ω̃i,t)]
≤ ∆,

E[pi(x, ω̃i, t)]
2 ≥ 5

8E[p2
i (x, ω̃i, t)],

E[pi(x, ω̃i, t)] ≥ 0


(6)

where the expectation is taken with respect to the distribution
of uncertain states and uncertain parameter ω̃i. Note that we
can compute E[p2

i (x, ω̃i, t)] and E[pi(x, ω̃i, t)] in (6) in terms
of the moments of uncertain state xt and known moments
of ω̃i. The following result holds true.

Theorem 1: The set M̂∆
ri in (6) is an inner approximation

of the moment-based risk contour M∆
ri in (5).

Proof : To obtain constraints in (6), we use concentration
inequalities that provide bounds on how a random variable

deviates from a certain value. Concentration inequalities
can be used to relax the chance constraints in the original
chance constrained optimization problem [15, 16]. More
precisely, we will leverage one-sided Vysochanskij–Petunin
(VP) inequality defined for unimodal random variable z ∈ R
as follows [28]:

P (z − E[z] ≥ r) ≤

{
4
9

σ2

σ2+r2 for r2 ≥ 5
3σ

2

4
3

σ2

σ2+r2 −
1
3 otherwise

(7)

where σ is the variance and r ≥ 0. We now define random
variable z ∈ R in terms of the polynomial of the uncertain
obstacle as z = −pi(x, ω̃i, t) and r = E[pi(x, ω̃i, t)]. By
applying the VP inequality, we obtain the constraints in (6).
Given that the probability provided by VP inequality is an
upper bound of the probability of the safety constraint, the
set in (6) is an inner approximation of the moments of proba-
bility distributions that satisfy the safety probabilistic safety
constraints. Also, the obtained upper bound of the chance
constraint is closely related to upper bound approximation
of the indicator function of the safety constraint (For more
information see [15]). �

Example 1: The set O =
{

(x1, x2) : x2
1 + x2

2 − ω̃2 ≤ 0
}

represents a circle-shaped obstacle whose radius ω̃ has a
uniform probability distribution over [0.3, 0.4], Moment of
order α of a uniform distribution defined over [l, u] can
be described in a closed-form as uα+1−lα+1

(u−l)(α+1) . To construct
the moment-based risk contour in (6), we can compute
E[p2(x, ω̃, t)] and E[p(x, ω̃, t)] in terms of the moments of
uncertain states x and known moments of ω̃ as follows:

E[p] = E[x2
1 + x2

2 − ω̃2] = −0.123 +m2,0 +m0,2

E[p2] = E[
(
x2

1 + x2
2 − ω̃2

)2
] = 0.015− 0.246m2,0

− 0.246m0,2 +m4,0 + 2m2,2 +m0,4

where mi,j = E[xi1x
j
2] is the moment of order (i+ j) of the

uncertain state x.
Example 2: An uncertain obstacle is described by the

polynomial p(x, ω̃) = −0.42x5
1 − 1.18x4

1x2 − 0.47x4
1 +

0.3x3
1x

2
2 − 0.57x3

1x2 + 0.6x3
1 − 0.65x2

1x
3
2 + 0.17x2

1x
2
2 +

1.87x2
1x2 + 0.06x2

1 + 0.69x1x
4
2 − 0.14x1x

3
2 − 0.85x1x

2
2 +

0.6x1x2 − 0.21x1 + 0.01x5
2 − 0.06x4

2 − 0.07x3
2 − 0.41x2

2 −
0.08x2 +0.07−0.1w where the uncertain parameter ω has a
Beta distribution with parameters (9, 0.5) over [0, 1]. In this
example, we assume that states (x1, x2) are deterministic and
obtain the set of all states whose probability of collision with
the uncertain obstacle in bounded by ∆. Figure 1 compares
the VP-inequality-based risk contour of this paper with the
provided risk contour in [15] for different risk levels ∆. As
shown in Figure 1, VP based risk contour results in less
conservative safe sets.

B. Uncertainty Propagation

In [26], we provide an exact moment-based uncertainty
propagation method through robotic systems. In this section,
we leverage [26] to describe the moments of uncertain states
in terms of the control inputs.



Fig. 1. Sets of all states (x1, x2) with bounded risk of ∆: True set (green),
inner approximation obtained using VP based risk contour in (6) (outside
of the dashed-curve ), and inner approximation obtained by the method in
[15] (outside of the solid-curve)

Given the stochastic dynamical system (1), we are going to
compute the moments of order α ∈ N of the state xt over the
time horizon t = 0, 1, . . . , T . We assume that f only contains
certain elementary functions, including polynomials, trigono-
metric functions, and mixed-trigonometric-polynomial func-
tions. This assumption is not conservative, given that many
robotic dynamical systems can be represented by these
elementary functions. For example, these classes of functions
can capture the translational motions of the robot represented
by the linear terms as well as rotational motions of the
robot represented by the trigonometric terms of the rotation
matrix. To be able to compute the moments of the uncertain
states, we need to compute the moments of the nonlinear
terms of function f in (1). For this purpose, we will use the
following lemmas to compute the moments of trigonometric
and mixed-trigonometric-polynomial functions.

Lemma 1. [26, Lemma 2] Let θ be a random variable with
characteristic function Φθ(t). Given (α1, α2) ∈ N2 where
α =

∑2
i=1 αi, trigonometric moments of order α of the

form mc
α1
θ s

α2
θ

= E[cosα1(θ) sinα2(θ)] can be computed as

(−i)α2

2α1+α2

(α1,α2)∑
(k1,k2)=(0,0)

(
α1

k1

)(
α2

k2

)
×

(−1)α2−k2Φθ(2(k1 + k2)− α1 − α2) (8)

Lemma 2. [26, Lemma 4] Let θ be a random variable with
characteristic function Φθ(t). Given (α1, α2, α3) ∈ N3 where∑3
i=1 αi = α, mixed-trigonometric-polynomial moments of

order α of the form mθα1c
α2
θ s

α3
θ

= E[θα1 cosα2(θ) sinα3(θ)]
can be computed as

1

iα1+α32α2+α3

(α2,α3)∑
(k1,k2)=(0,0)

(
α2

k1

)(
α3

k2

)
×

(−1)α3−k2 d
α1

dtα1
Φθ(t)|t=2(k1+k2)−α2−α3

(9)

To compute the moments of the uncertain states, we will
construct a new deterministic dynamical system that governs
the exact time evolution of the moments of the uncertain
states. For this purpose, we will first construct the augmented
system defined as

xaugt+1
= A(u, ω, t)xaugt (10)

where xaug is a vector of mixed-trigonometric-polynomial
basis generated by xt and A(u, ω, t) is a matrix of nonlinear
functions of u and ω. Now, using the definition of standard
moments of order α, we can recursively describe the mo-
ments of order α of the uncertain states at time t + 1, i.e.,
E[xαaugt+1

], in terms of the moments at time t, i.e., E[xαaugt ].
More precisely, we get the moment propagation equation as
follows

mα(t+ 1) = Amomα(t)mα(t) (11)

where mα is the vector of moments of the augmented state
xaug and Amomα(t) is the matrix of nonlinear functions of
u and known moments of ω.

Example 3: Consider the following stochastic nonlinear
system:

xt+1 = xt + vt cos (θt)

θt+1 = θt + ωθt

where, (x, θ) are the states, v is the control input, and
ωθ is the external disturbance. We define the augmented
state vector as xaug = [x, cos(θ), sin(θ)]T . By doing so,
the augmented system for the nonlinear stochastic system is
obtained as follows:

xaugt+1
=

1 vt 0
0 cos(ωθt) − sin(ωθt)
0 sin(ωθt) cos(ωθt)

xaugt (12)

The obtained augmented system is equivalent to the original
nonlinear stochastic system. Using the definition of the
moments and the augmented system, we obtain the moment
systems of the form (11) that govern the exact time evolution
of the moments of the uncertain states of the nonlinear
stochastic system. For example, we obtain the moment sys-
tem of order α = 1 of the form m1(t+1) = Amom1(t)m1(t)
for the augmented system in (12) as follows:

m1(t+ 1) =

1 vt 0
0 mcωθ

(t) −msωθ
(t)

0 msωθ
(t) mcωθ

(t)

m1(t)

where, m1(t) = [ E[xt], E[cos(θt)], E[sin(θt)] ]
T is the

vector of all moments of order α = 1 of xaugt . Also,
matrix Amom1

(t) is described in terms of the control input
and known first order trigonometric moments of the external
disturbance.

Similarly, we obtain the moment system of order α = 2
of the form m2(t + 1) = Amom2

(t)m2(t) where m2(t) is
the vector of all moments of order α = 2 of xaug as follows:
m2(t) =

[
E[x2

t ], E[xt cos(θt)], E[xt sin(θt)],E[cos2(θt)],

E[cos(θt) sin(θt)], E[sin2(θt)]
]T

. Also, matrix Amom2
is

obtained in terms of the control input and known first
and second order trigonometric moments of the external
uncertainty as follows:

Amom2
(t) =



1 2vt 0 v2
t 0 0

0 mcωθ
(t) −msωθ

(t) vtmcωθ
(t) −vtmsωθ

(t) 0

0 msωθ
(t) mcωθ

(t) vtmsωθ
(t) vtmcωθ

(t) 0

0 0 0 mc2ωθ
(t) −2mcωθ sωθ

(t) ms2ωθ
(t)

0 0 0 mcωθ sωθ
(t) mc2ωθ

(t)−ms2ωθ
(t) −mcωθ sωθ

(t)

0 0 0 ms2ωθ
(t) 2mcωθ sωθ

(t) mc2ωθ
(t)





C. Final Optimization Problem

To obtain the deterministic optimization of the planning
problem, we replace the stochastic dynamics equation by
the moment propagation equation (11). We also replace the
constraints on risk of collisions by deterministic constraints
in terms of the moments in (6). Similarly, we can replace
the constraint on probability of reaching the goal region
with deterministic constraints in terms of the moments, i.e.,
M∆goal

rg (T ).
By doing so, we arrive at an deterministic nonlinear op-

timization problem where the decision variables are control
inputs u and moments of the augmented states as follows:

Problem 2. Deterministic Trajectory Optimization

min
mα|2dα=1,u

E[lf (xT ) +

T−1∑
t=0

l(xt,ut, ωt)]

s.t. mα(t+ 1) = Amomα(t)mα(t), |T−1
t=0 ,

mα(t) ∈M∆
ri(t), |

T−1
t=0 , |Mi=1,

mα(T ) ∈M∆goal
rg (T ),

mα(0) = E[xα0 ]

(13)

We can solve the obtained nonlinear optimization using the
off-the-shelf interior point solvers. The size of the obtained
deterministic optimization is a function of 1) the number
of the planning time steps, 2) the highest order of the
polynomials of obstacles and the goal region, and 3) the
number of system states.

IV. EXPERIMENTS

In this section, we demonstrate our method on several
robotics examples. The computations in this section were
performed on a computer with Intel i7 2.6 GHz processors
and 16 GB RAM. We use Casadi package [29] for Matlab as
the wrapper to solve nonlinear optimization problems. The
optimization returns a sequence of controls and a sequence
of moments of the uncertain system states over the planning
horizon1. In the experiments, we plot the expected value
of the obtained state trajectory and also expected obstacle
locations using polynomial pi(x,E[ω̃i], t) of (2).

A. Underwater Vehicle

Motion of an underwater vehicle in the presence of exter-
nal disturbances is modeled as

xt+1 = xt + ∆T (vt + ωvt) cos(θt + ωθt)

yt+1 = yt + ∆T (vt + ωvt) sin(θt + ωθt)

where (x, y) is the position, and ∆T = 0.1. We model the
external disturbances using the random variables ωv and ωθ
with uniform distribution on [−0.1, 0.1]. We can control the
position of the vehicle using its velocity v and steering angle
θ. Given the uncertain initial location of the vehicle modeled
by uniform distribution on [−0.1, 0.1]× [−0.1, 0.1], we want
to guide the vehicle toward the goal region in T = 10 steps

1The code is on github.com/jasour/Non-Gaussian_
Risk-Bounded_TrajOpt
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Fig. 2. Example IV-A: The red curves are the expected location of the
obstacles, where the high order obstacle consists of two regions. The green
curve defines the goal region. The blue path is the expected optimal path.
The trajectory has the bounded risk of 0.1, and the system enters the goal
region with probability of at least 0.99.

while minimizing the objective function
∑T
t=0 v

2
t + θ2

t and
avoiding the uncertain unsafe regions. The acceptable risk
bounds of the planning problem are ∆ = 0.1,∆goal = 0.1.

The goal region is defined by the polynomial inequality
of the form of (2) with polynomial pg(x) = (x1 − 0.5)2 +
(x2− 1)2− 0.12 ≤ 0. Uncertain unsafe regions are modeled
by 4 polynomial inequalities in the form of (2) with the
following polynomials: p1(x, ω1) = 0.42x5

1 + 1.18x4
1x2 +

0.47x4
1−0.3x3

1x
2
2+0.57x3

1x2−0.6x3
1+0.65x2

1x
3
2−0.17x2

1x
2
2−

1.87x2
1x2 − 0.06x2

1 − 0.69x1x
4
2 + 0.14x1x

3
2 + 0.85x1x

2
2 −

0.6x1x2 + 0.21x1 − 0.01x5
2 + 0.06x4

2 + 0.07x3
2 + 0.41x2

2 +
0.08x2−0.07 + 0.1ω1 ≤ 0, p2(x, ω2) = (x1−0.4)2 + (x2 +
0.5 +ω2)2− 0.32 ≤ 0, p3(x, ω3) = x2

1 + (x2 + 1.0 +ω3)2−
0.32 ≤ 0, and p4(x, ω4) = (x1 + 0.7)2 + (x2 + 0.5 +ω4)2−
0.22 ≤ 0, where ω1 has Beta distribution with parameters
(9, 0.5) over [0, 1], and ω2, ω3, ω4 have uniform distribution
on [−0.02, 0.02].

We obtain the moment propagation equations up to order
2d, where d = 5 is the maximum polynomial order of the un-
safe regions. The optimization has around 700 variables and
around 900 constraints. The optimization variables include
2D state moments up to order 10 and two control variables
for each time step. It took the solver around 158 seconds
to find the optimal solution. Figure 2 shows the planned
trajectory. To verify the results, we estimate the risk of the
obtained trajectory using Monte Carlo simulation. We sample
one million points from the initial distribution and simulate
them forward via the stochastic dynamics. The trajectory is
verified to have the bounded risk of 0.1, and the system enters
the goal region with probability of at least 0.99.

B. Aerial Vehicle

The motion of an aerial vehicle in 3D space in the presence
of wind disturbances is modeled as

xt+1 = xt + ∆T (vt + wvt) sin(θt + wθt) cos(φt + wφt)

yt+1 = yt + ∆T (vt + wvt) sin(θt + wθt) sin(φt + wφt)

zt+1 = zt + ∆T (vt + wvt) cos(θt + wθt)

where (xt, yt, zt) is the 3D position, (vt, θt, φt) are the con-
trol inputs, and (ωvt , ωθt , ωφt ) are the external disturbances.
The planning horizon is T = 10 and ∆T = 0.1. The noises
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Fig. 3. Example IV-B: Time steps t = 0.3, 0.4, 0.7, and 1.0. The black
curve is the planned trajectory. The triangle is the expected system state.
The red balls are moving obstacles. The green ball is the goal region. The
trajectory has the bounded risk of 0.1 at each time step, and the system
reaches the goal region with probability of at least 0.9.

wvt, wθt, and wφt have uniform distribution over [−0.1, 0.1].
The initial states x0, y0, z0 have uniform distribution over
[−1 − 0.05,−1 + 0.05]. There are 6 moving 3D uncertain
obstacles in the environment. We model obstacles as moving
3D balls with uncertain radius and position. The radius of
each ball has a uniform distribution over [0.2, 0.4] and the
trajectory of each ball is disturbed by Gaussian noise of
mean 0 and variance 0.001 in each axis. We want to steer
the system to the goal region around (1, 1, 1), respecting
the risk bound ∆ = 0.1. The optimization has around
400 variables and around 600 constraints. It took the solver
around 7 seconds to find a solution. The obtained trajectory is
plotted in Figure 3. We estimate the risk using Monte Carlo
simulation. We sample one million points from the initial
distribution and simulate them forward via the stochastic
dynamics. The trajectory is verified to have the bounded
risk of 0.1 at each time step, and the system reaches the
goal region with probability of at least 0.9.

C. Ground Vehicles

In this example, we consider a ground vehicle model with
the following uncertain dynamics

xt+1 = xt + ∆Tvt cos(θt)

yt+1 = yt + ∆Tvt sin(θt)

vt+1 = vt + ∆T (at + ωvt)

θt+1 = θt + ∆T (ut + ωθt)

The states are the 2D position (xt, yt), the velocity vt, and
the orientation θt. The control inputs are at and ut. The
planning horizon is T = 10 and ∆T = 0.1. The noise
ωv has normal distribution with mean 0 and variance 1,
while ωθt has Beta distribution with parameters (1, 3) over
[0, 1]. The initial states x0, y0, v0, and θ0 have uniform
distributions over [−0.05, 0.05], [−0.05, 0.05], [0, 0.1], and
[π/3 − 0.1, π/3 + 0.1], respectively. The environment has
two moving vehicles with uncertain locations. One vehicle is
defined by p1(x, t) = (x1−(ω1+t))2+(x2−1)2−0.22 ≤ 0,
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Fig. 4. Example IV-C: Time steps 0.7, 0.8, 0.9, and 1. The black curve
is the planned trajectory. The blue circles are 10,000 samples of system
states. The red curves are moving obstacles. The green curve defines the
goal region. The red triangle is the current expected state on the trajectory.
The system has the bounded risk of 0.1 and enters the goal region with
probability of at least 0.9.

where ω1 has uniform distribution over [−0.1, 0.1]. The other
vehicle is defined by p2(x, t) = (x1− (1+ω2 + t))2 +(x2 +
0.5)2 − 0.22 ≤ 0, where w2 has uniform distribution over
[−0.05, 0.05]. The optimization has around 2,300 variables
and around 2,400 constraints. It took the solver around 5
minutes to compute the solution. The obtained trajectory
is represented by the black curve in Figure 4. To verify
the results, we sample one million points from the initial
distribution and simulate them forward via the stochastic
dynamics shown in Figure 4. The system is verified to have
the bounded risk of 0.1 at each time step and enters the goal
region with probability of at least 0.9.

V. CONCLUSION

We have proposed a method to solve the most general
motion planning problem where the system dynamics is
stochastic and nonlinear, the initial position is uncertain,
the uncertain obstacles can move and change shapes over
time, and all the uncertainties are not necessarily Gaus-
sian. Our method builds on moment-based representation
and propagation of uncertainties to convert the probabilistic
trajectory planning problem into a deterministic nonlinear
optimization where the off-the-shelf nonlinear solvers can be
used to obtain the optimal solutions. For the future work, we
will use a similar framework to design feedback controllers
to track the nominal trajectory while reducing the tracking
uncertainty of the system states over the planning horizon.
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