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Abstract

Predicting future motions of road participants is an im-
portant task for driving autonomously in urban scenes. Ex-
isting models excel at predicting marginal trajectories for
single agents, yet it remains an open question to jointly
predict scene compliant trajectories over multiple agents.
The challenge is due to exponentially increasing predic-
tion space as a function of the number of agents. In this
work, we exploit the underlying relations between interact-
ing agents and decouple the joint prediction problem into
marginal prediction problems. Our proposed approach M2I
first classifies interacting agents as pairs of influencers and
reactors, and then leverages a marginal prediction model
and a conditional prediction model to predict trajectories
for the influencers and reactors, respectively. The predic-
tions from interacting agents are combined and selected ac-
cording to their joint likelihoods. Experiments show that
our simple but effective approach achieves state-of-the-art
performance on the Waymo Open Motion Dataset interac-
tive prediction benchmark.

1. Introduction
Trajectory prediction is widely used by intelligent driv-

ing systems to infer future motions of nearby agents and
identify risky scenarios to enable safe driving. Recent ad-
vances have shown great success in predicting accurate
trajectories by learning from real-world driving examples.
Many existing trajectory prediction works [5, 12, 15, 26, 28,
38] focus on generating marginal prediction samples of fu-
ture trajectories over individual agents, failing to reason
about their interactions in the future. As a result, the pre-
diction samples over multiple agents may overlap with each
other and result in sub-optimal performance.

We present a motivating example in Fig. 1, in which a
marginal predictor produces a set of prediction samples sep-
arately for two interacting agents, as visualized in the top
left figure. While the predictions for each agent are rea-
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Figure 1. A motivating example of M2I. Top: Traditional marginal
predictor often produces scene inconsistent trajectory predictions
that collide with each other. Even for non-colliding predictions, it
ignores the potential interaction between agent futures and may
predict unrealistic behaviors. Bottom: Our proposed approach
M2I predicts scene compliant trajectories by first identifying an
influencer reactor pair in the scene. It then predicts marginal tra-
jectories for the influencer and reactive trajectories for the reactor.

sonable without considering the presence of the other, some
trajectory pairs will collide when considering them jointly.
For instance, it is unlikely that the red agent turns left while
the blue agent goes forward, as indicated in the top middle
example in Fig. 1. Therefore, it is necessary to predict scene
compliant trajectories with the existence of multiple agents
to support better prediction accuracy.

To generate scene compliant trajectories, one can learn
a joint predictor to predict trajectories in a joint space over
multiple agents; however, it suffers from an exponentially
increasing prediction space as the number of agents in-
creases. As investigated by [15], while it is feasible to pre-
dict a set of goals for a single agent, the goal space increases
exponentially with the number of agents and becomes un-
manageable for even two agents with a few hundred goal
candidates for each agent. A more computationally effi-
cient alternative to producing scene compliant trajectories
is to post-process marginal prediction samples by pruning
colliding ones; however, such an ad-hoc approach fails to
take into account potential agent interactions in the future
and may ignore other conflicts which are hard to prune by
heuristics. For instance, although the prediction sample in
the top right figure in Fig. 1 is collision-free, the red agent
may slow down when turning left to keep a safe distance
from the blue agent. Such an interactive behavior is hard to
be captured by a marginal predictor as it is unaware of the
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future behavior of the other agents in the scene.
In this paper, we propose M2I that leverages marginal

and conditional trajectory predictors to efficiently predict
scene compliant multi-agent trajectories, by approximating
the joint distribution as a product of a marginal distribution
and a conditional distribution. The factorization assumes
two types of agents: the influencer that behaves indepen-
dently without considering the other agents, and the reactor
that reacts to the behavior of the influencer. This assump-
tion is inspired by the recent study on the underlying cor-
relations between interactive agent trajectories [39]. Under
the assumption, we leverage a standard marginal predictor
to generate prediction samples for the influencer, and a con-
ditional predictor to roll out future trajectories for the re-
actor conditioned on the future trajectory of the influencer.
The advantage of our proposed approach M2I is illustrated
in the bottom figures in Fig. 1, in which we first predict the
relations of the interactive agents. Given the relations, we
predict the future trajectories of the influencer and then pre-
dict reactive behaviors of the reactor conditioned on each
influencer prediction. As causality in driving interaction re-
mains an open problem [39], we pre-label the influencer-
reactor relation based on a heuristic, and propose a relation
predictor to classify interactive relations at inference time.

Our contributions are three-fold. First, we propose a sim-
ple but effective framework M2I that leverages marginal
and conditional predictors to generate accurate and scene
compliant multi-agent trajectories. The framework does
not assume a specific predictor structure, allowing it to be
adopted by a wide range of backbone prediction models.
Second, we propose a relation predictor that infers high-
level relations among interactive agents to decouple the pre-
diction space. Third, we demonstrate our framework using a
goal-conditioned prediction model. Experiments show that
M2I achieves state-of-the-art performance on the Waymo
Open Motion Dataset interactive prediction benchmark.

2. Related Work
Trajectory prediction for traffic agents has been studied

extensively in recent years. Due to uncertainty in human
intent, the future trajectories are probabilistic and multi-
modal. To handle the multi-modality problem, [5, 35] pro-
pose models that output behavior predictions as Gaussian
mixture models (GMMs), in which each mixture compo-
nent represents a single modality. Instead of parameterizing
the prediction distribution, generative models, such as gen-
erative adversarial models (GANs) [16, 18, 47] and (con-
ditional) variational autoencoders (VAEs) [26, 29, 35, 44],
produce trajectory samples to approximate the distribution
space. These generative models suffer from sample ineffi-
ciency and require many samples to cover diverse driving
scenarios [18].

More recently, a family of models are proposed to im-

prove prediction accuracy and coverage by first predict-
ing high-level intentions, such as goal targets [11, 13, 15,
29, 34, 46], lanes to follow [21, 37], and maneuver actions
[8, 9, 19, 24], before predicting low-level trajectories con-
ditioning on the intention. Such models demonstrate great
success in predicting accurate trajectories for single agents
in popular trajectory prediction benchmarks, such as Argo-
verse [6] and Waymo Open Motion Dataset [10]. While
our proposed approach M2I can use an arbitrary prediction
model, we choose to adopt an anchor-free goal-based pre-
dictor [15] because of its outstanding performance.

In the rest of the section, we introduce the literature
closely related to our approach, on interactive trajectory
prediction and conditional trajectory prediction.

2.1. Interactive Trajectory Prediction
Predicting scene compliant trajectories for multiple

agents remains an open question due to its complexity.
Early work leverages hand-crafted interaction models, such
as social forces [17] and energy functions [43]. These hand-
crafted functions require manual tuning and have difficulties
modeling highly complicated and nonlinear interactions. In
contrast, learning-based methods achieve better accuracy
by learning interactions from realistic driving data: [2, 16]
utilize social pooling mechanisms to capture social influ-
ences from neighbor agents to predict interactive pedes-
trian trajectories in crowded scenes; [3, 4, 31, 35] build a
graph neural network (GNN) to learn the agent-to-agent in-
teractions; [22, 27, 32, 33, 38] leverage attention and trans-
former mechanisms to learn multi-agent interaction behav-
iors. In this work, we build a sparse graph with directed
edges representing dependencies between agent nodes, but
our approach differs from existing graph-based models in
a few ways. First, it adopts explicit influencer-reactor rela-
tions and offers better interpretability in agent interactions.
Second, M2I predicts scene compliant trajectories through
marginal and conditional predictors to afford better compu-
tational efficiency. Third, it utilizes the future trajectory of
influencer agents to predict conditional behaviors for the re-
actors for better accuracy. This also allows M2I to be used
for counterfactual reasoning in simulation applications by
varying influencer trajectories.

Existing marginal prediction work produces scene com-
pliant trajectories by leveraging an auxiliary collision
loss [27] or a critic based on an inverse reinforcement learn-
ing framework [40] that discourages colliding trajectories.
In this work, we focus on identifying agent relations explic-
itly as influencers and reactors to generate scene compliant
predictions. Our work is relevant to [23, 25] that predicts
interacting types before predicting scene compliant trajec-
tories, but we further exploit the structure of the decoupled
relations and the influence of low-level influencer trajecto-
ries, as opposed to only providing the high-level interaction
labels as the input to the trajectory predictor.
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Figure 2. Overview of M2I. The relation predictor predicts influencer-reactor relations for interacting agents. The marginal predictor
generates marginal predictions for the influencer. The conditional predictor generates predictions for the reactor, conditioned on each
influencer trajectory. The sample selector chooses a subset of representative joint samples as output.

2.2. Conditional Trajectory Prediction

Conditional prediction approaches study the correla-
tions between future agent trajectories, by predicting tra-
jectories conditioned on the future trajectory of another
agent [20,35,39]. These approaches often rely on the future
trajectory of the autonomous vehicle or a robot whose future
plan is known to the predictor. Our work goes beyond by
conditioning on the future trajectory of another agent to be
predicted. Despite the prediction errors of the conditioned
agent, we show that our model outperforms marginal pre-
dictors that do not account for the interactive correlations.

3. Approach
In this section, we introduce a formal problem formula-

tion and an overview of M2I, followed by detailed explana-
tions of each model used in the approach.

3.1. Problem Formulation

Given observed states X = (M,S), including the map
states M and the observed states S of all agents in a scene,
the goal is to predict the future states of the interacting
agents Y up to a finite horizon T . We assume the interacting
agents are pre-labeled in a given scene, which is available
in common interactive prediction datasets such as [10, 45].
As the distribution over Y is a joint distribution over mul-
tiple agents, we approximate it as the factorization over a
marginal distribution and a conditional distribution:

P (Y |X) = P (YI , YR|X) ≈ P (YI |X)P (YR|X,YI). (1)

The factorization in Eq. (1) first assigns the interacting
agents as the influencer YI and the reactor YR, and decou-
ples the joint distribution as the marginal distribution over
the influencer and the conditional distribution over the reac-
tor. This factorization allows us to reduce the complexity of
learning a joint distribution to learning more tractable dis-
tributions. In the case where two agents are not interacting,
the factorization can be simplified as two marginal distribu-
tions:

P (Y |X) ≈ P (YI |X)P (YR|X), (2)

where there is no conditional dependence between the
agents. Such independence is presumed by many marginal
prediction models that predict the marginal distribution
without considering other agents in the scene.

We focus on two interactive agents in this paper and aim
to tackle the pairwise interactive trajectory prediction prob-
lem proposed by [10]. For scenarios involving more than
two interactive agents, our approach can be modified by pre-
dicting the relations over all the agents and chaining multi-
ple marginal and conditional distributions together, assum-
ing no loopy influence:

PN>2(Y |X) ≈
N∏
i=1

P (Yi|X,Yinf
i ), (3)

where N is the number of total interactive agents, and Yinf
i

is the set of influencer agents for agent i predicted by the
relation predictor. We refer to examples of multi-agent re-
lation predictions in Appendix C.

3.2. Model Overview

Our proposed approach M2I is summarized in Fig. 2. It
includes a relation predictor to predict the influencer and
the reactor in a scene, a marginal predictor to predict fu-
ture trajectories of the influencer, a conditional predictor
to predict future trajectories of the reactor conditioned on
the future trajectory of the influencer, and a sample selec-
tor to select a set of representative joint prediction sam-
ples. Although M2I includes three different learned models,
they share the same encoder-decoder structure and adopt
the same context encoder to learn context information, as
illustrated in Fig. 3. The conditional predictor takes an aug-
mented scene context input that includes the influencer fu-
ture trajectory to learn reactive behaviors for the reactor. In
the following, we introduce each model with more details.

3.3. Relation Predictor

We propose a relation predictor to classify whether an
interacting agent is an influencer or a reactor, based on the
pass yield relation between two agents. Similar to [23], we
assume three types of relations: PASS, YIELD, and NONE,
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Figure 3. M2I includes three models that share the same context encoder. The relation predictor includes a relation prediction head to
predict distribution over relation types. The marginal predictor adopts a trajectory prediction head to produce multi-modal prediction
samples. The conditional trajectory predictor takes an augmented scene context input as the influencer future trajectory.

and determine the relation using the following heuristics.
Given two agent future trajectories y1 and y2 with T steps,
we first compute the closest spatial distance between two
agents to determine whether a pass yield relation exists:

dI = minTτ1=1minTτ2=1||y
τ1
1 − y

τ2
2 ||2. (4)

If dI > εd, which is a dynamic threshold depending on
the agent size, the agents never get too close to each other
and thus we label the relation type as none. Otherwise, we
obtain the time step from each agent at which they reach the
closest spatial distance, such that:

t1 = argminTτ1=1minTτ2=1||y
τ1
1 − y

τ2
2 ||2, (5)

t2 = argminTτ2=1minTτ1=1||y
τ1
1 − y

τ2
2 ||2. (6)

When t1 > t2, we define that agent 1 yields to agent 2,
as it takes longer for agent 1 to reach the interaction point.
Otherwise, we define that agent 1 passes agent 2.

After labeling the training data with three interaction
types, we propose an encoder-decoder-based model to clas-
sify an input scenario into a distribution over these types.
As shown in Fig. 3, the relation predictor model consists
of a context encoder that extracts the context information,
including the observed states of the interacting agents and
nearby agents and map coordinates, into a hidden vector,
as well as a relation prediction head that outputs the prob-
ability over each relation type. There is a rich set of liter-
ature on learning context information from a traffic scene,
such as [7, 12, 14, 28]. Our model could utilize any exist-
ing context encoder thanks to its modular design, and we
defer a detailed explanation of our choice in Sec. 4. The
relation prediction head consists of one layer of multi-layer
perceptron (MLP) to output the probability logits over each
relation.

The loss to train the relation predictor is defined as:

Lrelation = Lce(R, R̂), (7)

where Lce is the cross entropy loss, R is the predicted rela-
tion distribution, and R̂ is the ground truth relation.

Given the predicted relation, we can assign each agent as
an influencer or a reactor. If the relation is none, both agents
are influencer, such that their future behaviors are indepen-
dent of each other, as in Eq. (2). If the relation is agent 1
yielding to agent 2, we assign agent 1 as the reactor and
agent 2 as the influencer. If the relation is agent 1 passing
agent 2, we flip the influencer and reactor labels.

3.4. Marginal Trajectory Predictor

We propose a marginal trajectory predictor for the in-
fluencer based on an encoder-decoder structure, as shown
in Fig. 3, which is widely adopted in the trajectory predic-
tion literature [10, 14, 46]. The predictor utilizes the same
context encoder as in Sec. 3.3, and generates a set of pre-
diction samples associated with confidence scores using a
trajectory prediction head. Although our approach can take
an arbitrary prediction head, we focus on an anchor-free
goal-based prediction head because of its outstanding per-
formance in trajectory prediction benchmarks, and defer a
detailed explanation in Sec. 4.

3.5. Conditional Trajectory Predictor

The conditional trajectory predictor is similar to the
marginal predictor, except that it takes an augmented scene
context that includes the future trajectory of the influencer,
as shown in Fig. 3. This allows the features of the influencer
future trajectory to be extracted and learned in the same
way as other context features. The encoded scene feature
is used by the trajectory prediction head, which shares the
same model as in the marginal predictor, to produce multi-
modal prediction samples.

3.6. Sample Selector

Given the predicted relations of the influencer and the
reactor, we predict N samples with confidence scores (or



probabilities) for the influencer using the marginal predic-
tor, and for each influencer sample, we predict N samples
for the reactor using the conditional predictor. The num-
ber of joint samples is thus N2, and the probability of each
joint sample is a product of the marginal probability and
the conditional probability. We further reduce the size of
the joint samples to K as evaluating each prediction sam-
ple for downstream tasks such as risk assessment can be
expensive [41]. In M2I, we select the K samples from N2

candidates with the highest joint likelihoods.

3.7. Inference

At inference time, we generate the joint predictions fol-
lowing the procedure illustrated in Fig. 2. First, we call the
relation predictor and choose the interaction relation with
the highest probability. Second, for the predicted influencer,
we generate N trajectory samples using the marginal pre-
dictor. Third, for each influencer sample, we generate N
samples for the predicted reactor using the conditional pre-
dictor. Fourth, we use the sample selector to select K rep-
resentative samples from N2 candidates. In the case where
the predicted relation is none, we use the marginal predictor
for both agents to obtain N2 trajectory pairs, and follow the
same sample selection step.

4. Experiments
In this section, we introduce the dataset benchmark and

details of the model, followed by a series of experiments to
demonstrate the effectiveness of M2I.

4.1. Dataset

We train and validate M2I in the Waymo Open Motion
Dataset (WOMD), a large-scale driving dataset collected
from realistic traffic scenarios. We focus on the interactive
prediction task to predict the joint future trajectories of two
interacting agents for the next 8 seconds with 80 time steps,
given the observations, including 1.1 seconds of agent states
with 11 time steps that may include missing observations
and the map state. The dataset includes 204,166 scenarios
in the training set and 43,479 examples in the validation set.
The dataset provides labels on which agents are likely to
interact, yet it does not specify how they interact. During
training, we pre-label the interaction type (yield, pass, or
none) of the interacting agents according to Sec. 3.3.

4.2. Metrics

We follow the WOMD benchmark by using the follow-
ing metrics: minADE measures the average displacement
error between the ground truth future joint trajectory and
the closest predicted sample out of K = 6 joint samples.
This metric is widely adopted since [16] to measure the pre-
diction error against a multi-modal distribution. minFDE

measures the final displacement error between the ground
truth end positions in the joint trajectory and the closest pre-
dicted end positions fromK joint samples. Miss rate (MR)
measures the percentage of none of the K joint prediction
samples are within a given lateral and longitudinal thresh-
old of the ground truth trajectory. The threshold depends on
the initial velocity of the predicted agents. More details are
described in [10]. Overlap rate (OR) measures the level of
scene compliance as the percentage of the predicted trajec-
tory of any agent overlapping with the predicted trajectories
of other agents. This metric only considers the most likely
joint prediction sample. A lower overlap rate indicates
the predictions are more scene compliant. In this paper,
we slightly modify the metric definition compared to the
original version of WOMD, which considers the overlap-
ping among all objects including the ones not predicted, so
that we can measure directly the overlapping between pre-
dicted agents. Mean average precision (mAP) measures
the area under the precision-recall curve of the prediction
samples given their confidence scores. Compared to mi-
nADE/minFDE metrics that are only measured against the
best sample regardless of its score, mAP measures the qual-
ity of confidence score and penalizes false positive predic-
tions [10]. It is the official ranking metric used by WOMD
benchmark and we refer to [10] for the implementation.

4.3. Model Details

We present the detailed implementation of our model and
training procedure in the following sections.

4.3.1 Context Encoder
The context encoder leverages both vectorized and ras-
terized representations to encode traffic context. Vector-
ized representation takes the traffic context, including ob-
served agent states and map states, as vectors. It is effi-
cient at covering a large spatial space. Rasterized represen-
tation draws traffic context on a single image with multi-
ple channels and excels at capturing geometrical informa-
tion. Both representations have achieved top performance
in trajectory prediction benchmarks such as Argoverse and
WOMD [6, 10, 12, 14, 15].

In M2I, we use the best of both worlds. First, we lever-
age a vector encoder based on VectorNet [12] that takes ob-
served agent trajectories and lane segments as a set of poly-
lines. Each polyline is a set of vectors that connect neigh-
boring points together. For each polyline, the vector en-
coder runs an MLP to encode the feature of vectors within
the polyline and a graph neural network to encode their de-
pendencies followed by a max-pooling layer to summarize
the feature of all the vectors. The polyline features, includ-
ing agent polyline features and map polyline features, are
processed by cross attention to obtain the final agent feature
that includes information on the map and nearby agents. We



refer to [12] for detailed implementations.
In addition to encoding the vectorized feature, we utilize

a second encoder to learn features from a rasterized repre-
sentation. Following [14], we first rasterize the input states
into an image with 60 channels, including the position of
the agents at each past time frame with the map information.
The size of the image is 224×224 and each pixel represents
an area of 1m × 1m. We run a pre-trained VGG16 [36]
model as the encoder to obtain the rasterized feature. The
output of the context encoder is a concatenation of the vec-
torized feature and the rasterized feature.

Conditional Context Encoder The context encoder in
the conditional trajectory predictor processes the additional
influencer future trajectory in the following ways. First, the
future trajectory is added to the vectorized representation
as an extra vector when running VectorNet. In parallel, we
create extra 80 channels on the rasterized representation and
draw the (x, y) positions over 80 time steps in the next 8
seconds. We run the pre-trained VGG16 model to encode
the augmented image, and combine the output feature with
the vectorized feature as the final output.

4.3.2 Relation Prediction Head

The relation prediction head has one layer of MLP with one
fully connected layer for classification. The MLP has a hid-
den size of 128, followed by a layer normalization layer and
a ReLU activation layer. The output is the logits over three
types of relations, as described in Sec. 3.3.

4.3.3 Trajectory Prediction Head

The trajectory prediction head adopts DenseTNT [15] to
generate multi-modal future predictions for its outstanding
performance in the marginal prediction benchmarks. It first
predicts the distribution of the agent goals as a heatmap,
through a lane scoring module that identifies likely lanes
to follow, a feature encoding module that uses the attention
mechanism to extract features between goals and lanes, and
a probability estimation module that predicts the likelihood
of goals. Next, the prediction head regresses the full tra-
jectory over the prediction horizon conditioned on the goal.
The prediction head can be combined with the context en-
coder and trained end-to-end.

4.3.4 Training Details

At training time, we train each model, including the rela-
tion predictor, marginal predictor, and conditional predic-
tor, separately. Each model is trained on the training set
from WOMD with a batch size of 64 for 30 epochs on 8
Nvidia RTX 3080 GPUs. The data is batched randomly.
We use an Adam optimizer and a learning rate scheduler
that decays the learning rate by 30% every 5 epochs, with
an initial value of 1e-3. The hidden size in the model is
128, if not specified. We observe consistent performance

over different learning rates and batch sizes. When training
the conditional predictor, we use the teacher forcing tech-
nique by providing the ground truth future trajectory of the
influencer agent.

4.4. Quantitative Results
In Tab. 1, we compare our model with the following

baselines, including the top ranked published models on the
WOMD interaction prediction challenge leaderboard [1]:
Waymo LSTM Baseline [10] is the official baseline pro-
vided by the benchmark. It leverages an LSTM encoder
to encode observed agent trajectories, and an MLP-based
prediction head to generate multiple samples. Waymo Full
Baseline [10] is an extended version of the Waymo LSTM
Baseline, by leveraging a set of auxiliary encoders to en-
code context information. SceneTransformer [32] is a
transformer-based model that leverages attention to com-
bine features across road graphs and agent interactions both
spatially and temporally. The model achieves state-of-
the-art performance in the WOMD benchmark in both the
marginal prediction task and the interactive prediction task.
HeatIRm4 [30] models the agent interaction as a directed
edge feature graph and leverages an attention network to
extract interaction features. It was the winner of the 2021
WOMD challenge. AIR2 [42] adopts a marginal anchor-
based model using a raster representation. The model gen-
erates joint predictions by combining marginal predictions
from each agent. It achieved the top performance at the
WOMD challenge. Baseline Marginal is our baseline
model that leverages the same marginal predictor as M2I
to generate N marginal prediction samples for both agents,
without considering their future interactions. When com-
bining the marginal predictions into joint predictions, we
take the top K marginal pairs out of N2 options given their
joint probabilities as the product of marginal probabilities.
This is a common practice to combine marginal predictions
into joint predictions, as in [4, 10]. Baseline Joint is our
baseline model that jointly predicts the goals and trajec-
tories for both interacting agents, using the same context
encoder and the trajectory prediction head as in M2I. As
the joint goal space grows exponentially with the number
of agents, we can only afford a small number of goal candi-
dates for each agent. To ease the computational complexity,
we leverage a marginal predictor to predict the top 80 goals
for each agent and obtain 80 × 80 goal pairs for joint goal
and trajectory prediction. As a result, this baseline trade-
offs prediction accuracy with computational feasibility by
using a reduced set of goals.

4.4.1 Validation Set
We present the results in the interactive validation set in the
top half of Tab. 1, where the baseline results are reported as
in [10,32]. Our model M2I outperforms both Waymo base-
lines in terms of all metrics. Compared to the current state-



Vehicle (8s) Pedestrian (8s) Cyclist (8s) All (8s)
Set Model mFDE ↓ MR ↓ mAP ↑ mFDE ↓ MR ↓ mAP ↑ mFDE ↓ MR ↓ mAP ↑ mAP ↑

Val.
Waymo LSTM Baseline [10] - 0.88 0.01 - 0.93 0.02 - 0.98 0.00 0.01
Waymo Full Baseline [10] 6.07 0.66 0.08 4.20 1.00 0.00 6.46 0.83 0.01 0.03
SceneTransformer [32] 3.99 0.49 0.11 3.15 0.62 0.06 4.69 0.71 0.04 0.07
Baseline Marginal 6.26 0.60 0.16 3.59 0.63 0.04 6.47 0.76 0.03 0.07
Baseline Joint 11.31 0.64 0.14 3.44 0.93 0.01 7.16 0.82 0.01 0.05
M2I 5.49 0.55 0.18 3.61 0.60 0.06 6.26 0.73 0.04 0.09

Test
Waymo LSTM Baseline [10] 12.40 0.87 0.01 6.85 0.92 0.00 10.84 0.97 0.00 0.00
HeatIRm4 [30] 7.20 0.80 0.07 4.06 0.80 0.05 6.69 0.85 0.01 0.04
AIR2 [42] 5.00 0.64 0.10 3.68 0.71 0.04 5.47 0.81 0.04 0.05
SceneTransformer [32] 4.08 0.50 0.10 3.19 0.62 0.05 4.65 0.70 0.04 0.06
M2I 5.65 0.57 0.16 3.73 0.60 0.06 6.16 0.74 0.03 0.08

Table 1. Joint metrics on the interactive validation and test set. The best performed metrics are bolded and the grey cells indicate the
ranking metric used by the WOMD benchmark. M2I outperforms both Waymo baselines and challenge winners. Compared to the current
state-of-the art model SceneTransformer, it improves the mAP metric by a large margin over vehicles and all agents, demonstrating its
advantage in learning a more accurate probability distribution and producing fewer false positive predictions.

of-the-art model SceneTransformer, M2I achieves a better
mAP, the official ranking metric, over vehicles, and a bet-
ter miss rate over pedestrians. Although M2I has higher
minFDE errors, it has improved the mAP over all agents
(the most right column) by a large margin, meaning our
model generates a more accurate distribution using its pre-
dicted confidence scores and outputs fewer false positive
predictions. In addition, as our proposed approach does
not assume a specific prediction model, it could leverage
SceneTransformer as the context encoder to achieve better
minFDE, and we defer it as future work. When compared
with our own baselines that share the same context encoder
and prediction head, M2I outperforms the marginal predic-
tor, which assumes independence between two agents, and
a joint predictor, which only affords a small set of goal can-
didates due to computational constraints.

4.4.2 Testing Set

We show the results in the interactive test set in the bottom
half of Tab. 1. For a fair comparison, we use the numbers
reported on the official benchmark website [1] and only in-
clude the published models. Similar to the observations
from the validation set, we observe that M2I improves mAP
metrics by a large margin, compared to past WOMD inter-
action prediction challenge winners [30,42] and the existing
state-of-the-art model [32].

4.5. Ablation Study
We present ablation studies on the relation predictor,

conditional predictor, and generalization to other predictors.

4.5.1 Relation Prediction

We measure the performance of our relation predictor on the
validation dataset and observe an accuracy of 90.09%. We
verify the significance of an accurate relation predictor by
comparing the performance of vehicle trajectory predictions

Model minADE ↓ minFDE ↓ MR ↓ mAP ↑

M2I Marginal 1.70 3.45 0.23 0.30
M2I Conditional GT 1.46 2.43 0.12 0.41
M2I Conditional P1 1.75 3.49 0.25 0.26

Table 2. Comparison between the marginal predictor and the con-
ditional predictor over marginal metrics for vehicle reactors at 8s.

using the predicted relations and using the ground truth re-
lations, and observe a gap of 3.05% in terms of mAP at 8s.

4.5.2 Conditional Prediction
We validate the effectiveness of our conditional predictor
by comparing its performance against the marginal predic-
tor (M2I Marginal) for vehicle reactor trajectory prediction.
The results are summarized in Tab. 2. When the condi-
tional predictor takes the ground truth future trajectory of
the influencer agent (c.f. M2I Conditional GT), it generates
predictions for the reactor agent with better performance
across all metrics. This validates our hypothesis on the de-
pendence between the influencer trajectory and the reactor
trajectory. As the ground truth trajectories are not available
at inference time, we present the prediction results when the
conditional predictor takes the best predicted influencer tra-
jectory as M2I Conditional P1. It is not surprising to see
that the performance is inferior to the marginal predictor re-
sults, due to errors in influencer prediction. However, as we
show in Tab. 1, our model is able to outperform the marginal
baseline model by including more than one sample from the
influencer and selecting the most likely joint samples.

4.5.3 Generalizing to Other Predictors
We demonstrate that our proposed approach can be ex-
tended to other existing predictor models to validate its gen-
eralizability. In this experiment, we replace the context
encoder with VectorNet [12] and the prediction head with
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Figure 4. Example prediction using Baseline Marginal (left) and M2I (right). The marginal predictor produces overlapping and inaccurate
predictions. M2I successfully identifies the influencer and reactor (the predicted relation type is annotated next to the current position of
each agent) in a challenging interactive scene and achieves better prediction accuracy and scene compliance.

Model minADE ↓ minFDE ↓ OR ↓ mAP ↑

TNT Marginal 3.43 8.72 0.42 0.10
TNT Joint 5.30 14.07 0.34 0.13
TNT M2I 3.38 8.46 0.20 0.14

Table 3. Joint metrics on the interactive validation set for vehicles
at 8s. We replace the context encoder and the prediction head in
M2I and baselines with a different model. We observe a similar
trend in performance improvement, especially over OR and mAP,
which validates the generalizability of our proposed approach.

TNT [46], which is an anchor-based goal-conditioned pre-
diction model, and obtain a variant of M2I named TNT M2I.
We compare this variant with a marginal predictor baseline
(TNT Marginal) and a joint predictor baseline (TNT Joint)
using the same VectorNet and TNT backbones.

The results, summarized in Tab. 3, show that our ap-
proach consistently improves all metrics, especially OR and
mAP, by a large margin when using a different predictor
model. The improvements indicate that our proposed ap-
proach generalizes to other predictors and generates scene
compliant and accurate future trajectories.

4.6. Qualitative Results

We present a challenging interactive scenario1 in Fig. 4,
and visualize the most likely prediction sample from a
marginal baseline and M2I. In this scenario, the red agent
is yielding to the blue agent who is making a U-turn. The
marginal predictor on the left fails to capture the interaction
and predicts overlapping trajectories. On the other hand,
M2I successfully identifies the underlying interaction rela-
tion, and predicts an accurate trajectory for the influencer
and an accurate reactor trajectory that reacts to the predicted
influencer trajectory. As a result, M2I achieves better pre-
diction accuracy and scene compliance.

1More examples can be found in Appendix B.

5. Conclusion
In conclusion, we propose a simple but effective joint

prediction framework M2I through marginal and condi-
tional predictors, by exploiting the factorized relations be-
tween interacting agents. M2I uses a modular encoder-
decoder architecture, allowing it to choose from a variety of
context encoders and prediction heads. Experiments on the
interactive Waymo Open Motion Dataset benchmark show
that our framework achieves state-of-the-art performance.
In the ablation study, we show the generalization of our
framework using a different predictor model.

Limitations We identify the following limitations. First,
there exists a gap when comparing our model to the state-
of-the-art in terms of the minFDE metric, indicating that
our approach still has room for improvement. Thanks to its
modular design, we plan to extend M2I to use SceneTrans-
former [32] as the context encoder and fill the gap. Second,
the performance of M2I heavily depends on the size of in-
teractive training data, especially when training the relation
predictor and the conditional trajectory predictor. Looking
at Tab. 1, we see that our approach improves the mAP met-
rics by a large margin on vehicles because of sufficient ve-
hicle interactions in the training data, but the improvement
is more negligible over the other two types due to lack of in-
teractive scenarios involving pedestrians and cyclists. Fi-
nally, M2I assumes no mutual influence between interact-
ing agents, allowing it to decouple joint agent distributions
into marginal and conditional distributions. While we have
observed an obvious influencer according to our heuristics
in almost all the interactive scenarios in the Waymo Open
Motion Dataset, we defer predicting for more complicated
scenarios involving mutual influence (and loopy influence
for more than two agents) as future work.
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Appendix
A. Additional Experiment Details

In this section, we introduce additional details on filter-
ing interactive training data, training the baseline joint pre-
dictor, and training by agent types.

A.1 Filtering Interactive Training Data

The Waymo Open Motion Dataset only provides interactive
scenarios in its validation set and testing set. To filter the in-
teractive scenario in the training set, we implement a script
to identify scenarios that include 2 interacting agents based
on the objects of interest mask provided in the data. The
script is provided in the source code.

A.2 Baseline Joint Predictor

We train the Baseline Joint predictor described in Sec. 4.4 as
follows. First, we predict the distribution of goals for each
interacting agent as a heatmap, according to [15]. Second,
we select the top 80 goals based on the predicted probability
for each agent. Third, we combine the selected goals into
6400 goal pairs and run each goal pair feature, including
(x, y) positions for both goals, through a 2-layer MLP with
a hidden size of 128 followed by a normalization layer and
a ReLU activation layer. Fourth, we run a fully connected
layer to predict the probability logit for each goal pair, and
train the joint goal prediction model through the following
loss:

LJ = Lce(J, Ĵ), (8)

where Lce is the cross entropy loss, J is the predicted goal
pair distribution, and Ĵ is the index of the goal pair out of all
candidates that is the closest to the ground truth goal pair in
terms of Euclidean distance. Given the predicted goal pairs,
we train the trajectory completion model to regress the full
trajectories of both interacting agents following the same
procedure in [15].

A.3 Training by Agent Types

The Waymo Open Motion Dataset consists of three types
of agents to predict: vehicles, pedestrians, and cyclists. As
each agent type has different behavior models and the dis-
tribution is unbalanced among types (e.g. vehicle types ac-
count for 78% of the training data), we train the marginal
trajectory predictor and the conditional trajectory predictor
for each agent type separately. We observe that the predic-
tion performance over pedestrians and cyclists improves by
a large margin, compared to training a single model for all
agents.

For the same reason, we train four relation predictors
for vehicle-vehicle interactions, vehicle-pedestrian inter-
actions, vehicle-cyclist interactions, and interactions that

cover the remaining agent pair types, including cyclist-
pedestrian, cyclist-cyclist, pedestrian-pedestrian.

B. Additional Qualitative Examples

We present additional representative examples in a va-
riety of interaction settings to showcase the advantage of
M2I over the marginal baseline.

B.1 Influencer Overtakes Reactor

In Fig. 5, we present three examples in which the influencer
overtakes the reactor. In each example, M2I successfully
predicts the correct relation type and improves prediction
accuracy and scene compliance, while the marginal predic-
tor predicts overlapping trajectories without considering the
future interaction between agents.

B.2 Reactor Yields to Influencer before Turning

In Fig. 6, we present three examples in which the reactor
waits for the influencer to pass before turning. In each ex-
ample, M2I successfully predicts the correct relation type
and the accurate reactive trajectories for the reactor. On the
other hand, the marginal predictor ignores the interaction
and results in less accurate predictions.

B.3 Reactor Merges behind Influencer

In Fig. 7, we present two examples in which the reactor
merges behind the influencer after the influencer passes. In
each example, M2I successfully predicts the correct relation
type and the accurate reactor trajectories that follow the in-
fluencer, while the marginal predictor fails to account for
the interaction and predicts trajectories far away from the
ground truth.

C. Multi-Agent Generalization

We present a qualitative analysis on applying M2I to
multi-agent scenarios involving more than two agents. In
Fig. 8, we show two examples in which M2I provides scene
compliant relation predictions in crowded traffic. Given the
relation predictions, it is straightforward to predict the agent
trajectories through marginal and conditional predictors, as
in Eq. (3).



Figure 5. Influencer overtakes reactor. In each example, M2I (right column) successfully predicts the correct relation type and improves
prediction accuracy and scene compliance, while the marginal predictor (left column) predicts overlapping trajectories without considering
the future interaction between agents.



Figure 6. Reactor yields to influencer before turning. In each example, M2I (right column) successfully predicts the correct relation type
and the accurate reactive trajectories for the reactor. On the other hand, the marginal predictor (left column) ignores the interaction and
results in less accurate predictions.



Figure 7. Reactor merges behind influencer. In each example, M2I (right column) successfully predicts the correct relation type and the
accurate reactor trajectories that follow the influencer, while the marginal predictor (left column) fails to account for the interaction and
predicts trajectories far away from the ground truth.
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Figure 8. Examples of M2I providing scene compliant relation predictions in complex multi-agent scenarios.
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