
Exocompilation for Productive Programming of
Hardware Accelerators

Yuka Ikarashi∗

MIT CSAIL, USA
Gilbert Louis Bernstein∗

UC Berkeley, USA
Alex Reinking
UC Berkeley, USA

Hasan Genc
UC Berkeley, USA

Jonathan Ragan-Kelley
MIT CSAIL, USA

Abstract

High-performance kernel libraries are critical to exploiting
accelerators and specialized instructions in many applica-
tions. Because compilers are difficult to extend to support
diverse and rapidly-evolving hardware targets, and auto-
matic optimization is often insufficient to guarantee state-
of-the-art performance, these libraries are commonly still
coded and optimized by hand, at great expense, in low-level
C and assembly. To better support development of high-
performance libraries for specialized hardware, we propose
a new programming language, Exo, based on the principle of
exocompilation: externalizing target-specific code generation
support and optimization policies to user-level code. Exo
allows custom hardware instructions, specialized memories,
and accelerator configuration state to be defined in user li-
braries. It builds on the idea of user scheduling to externalize
hardware mapping and optimization decisions. Schedules
are defined as composable rewrites within the language, and
we develop a set of effect analyses which guarantee program
equivalence and memory safety through these transforma-
tions. We show that Exo enables rapid development of state-
of-the-art matrix-matrix multiply and convolutional neural
network kernels, for both an embedded neural accelerator
and x86 with AVX-512 extensions, in a few dozen lines of
code each.

CCS Concepts: • Software and its engineering → Do-

main specific languages.

Keywords: program optimization, hardware accelerators,
user-schedulable languages, instruction abstraction, sched-
uling, user-extensible backend & scheduling

∗Both authors contributed equally to this paper

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9265-5/22/06.

https://doi.org/10.1145/3519939.3523446

ACM Reference Format:

Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc,

and Jonathan Ragan-Kelley. 2022. Exocompilation for Productive

Programming of Hardware Accelerators. In Proceedings of the 43rd

ACM SIGPLAN International Conference on Programming Language

Design and Implementation (PLDI ’22), June 13ś17, 2022, San Diego,

CA, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.

1145/3519939.3523446

1 Introduction
Modern computers are increasingly comprised of accelera-
tors. From neural and cryptography engines, to image signal
processors, to GPUs, a state-of-the-art system-on-chip (SoC)
today includes dozens of different specialized accelerators.
Even within their main CPUs, performance improvement
increasingly comes via new instructions performed by spe-
cialized functional units. This specialized hardware is or-
ders of magnitude more efficient than software running on
general-purpose hardware, but most applications are only
able to realize this performance and efficiency insofar as key
low-level libraries of high-performance kernels (e.g., BLAS,
cuDNN, MKL, etc.) are optimized to exploit the hardware.

While the role played by high-performance kernel libraries
is increasingly critical, there is little programming language
support for the performance engineers who write them.
Progress continues to be made after decades of effort on
fully-automatic compiler optimization, but state-of-the-art
kernelsÐfrom linear algebra, to deep learning, to signal pro-
cessing and cryptographyÐare still predominantly written
by hand, directly in low-level C and hardware-specific in-
trinsics or assembly, or with lightweight metaprogramming
(e.g., macros or C++ templates) of such low-level code. As a
result, developing and tuning these libraries is enormously
labor intensive, limiting the range of accelerated routines and
creating barriers to deploying new or improved accelerators.
Developing accelerated high-performance libraries is a

unique software engineering task, with several unusual char-
acteristics. First, in contrast to conventional programs on
general-purpose processors, the hardware-software inter-
faces to accelerators are both complexÐincluding special-
ized memories, exposed configuration state, and complex
operationsÐand highly diverse, with different complexities
unique to each accelerator. Second, the rates of change at dif-
ferent levels in the stackÐfrom applications to hardware
ISAÐare inverted: accelerator architectures change more

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

703

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0001-5255-0918
https://orcid.org/0000-0002-3016-1169
https://orcid.org/0000-0003-3285-2112
https://orcid.org/0000-0002-6884-941X
https://orcid.org/0000-0001-6243-9543
https://doi.org/10.1145/3519939.3523446
https://doi.org/10.1145/3519939.3523446
https://doi.org/10.1145/3519939.3523446

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan Ragan-Kelley

rapidly than the essential functions which run on them (e.g.,
mobile phone SoCs are rebuilt every year, with major re-
visions to nearly every accelerator block, while the BLAS
standard changes much more slowly), and the implementa-
tion of these functions to most efficiently use the hardware is
iterated more quickly, still. This is especially acute during ac-
celerator development, where target application workloads
are often fixed, while both the hardware architecture and
kernels mapping to it are iteratively co-designed to maximize
performance and efficiency.
In this paper, we propose exocompilation as a new ap-

proach to programming language and compiler support for
developing hardware-accelerated high-performance libraries.
The principle of exocompilation is to externalize as much
accelerator-specific code-generation logic and optimization
policy from the compiler as possible, instead exposing them
at the user level to high-performance library writers. Specif-
ically, we externalize accelerator specification to user-level
libraries, andwe build on the idea of user scheduling, popular-
ized by languages like Halide and TVM [8, 29], to externalize
hardware mapping and optimization decisions.

We develop a new language and compiler called Exo based
on this principle of exocompilation. Exo allows custom hard-
ware instructions to be user-defined and abstracted as pro-
cedures. It also allows specialized memories and accelerator
configuration state to be defined in user code, without modi-
fying the core compiler. User scheduling enables a rich space
of optimization and hardware mapping choices to be directly
explored by the performance engineer, rather than requiring
an automated optimizer to always make perfect decisions.
In contrast to optimization by manually rewriting low-

level code, scheduling transformations are concise and safe.
They elide many details like array and loop re-indexing
(which can be automatically inferred), while guaranteeing
both functional equivalence and memory safety. Different
schedules best optimize the same library function for differ-
ent hardware, or even for different parameter values, and
specialized versions for each case can be generated from a
single source algorithm. Arbitrary program fragments can
be replaced during scheduling with equivalent user-defined
accelerator instructions, or specialized subroutines, using
a unification procedure that automates the transformation
of essential arguments and array indexing. Finally, in con-
trast to languages like Halide and TVM, Exo implements
user scheduling via composable rewrite rules. This allows
the scheduling language itself to be easily extended, since
each operator defines an independent rewrite, rather than
interacting with all others in a monolithic lowering process.

We explore what is required of safety analyses for such a
language, and define a set of effect analyses which support
guarantees of program equivalence and memory safety af-
ter scheduling (ğ5). We make the simplifying assumption of
affine loops and array indexing, which has been shown to be
sufficient for many kernels of interest in high-performance

libraries [12]. Nonetheless, accelerator configuration intro-
duces global mutable state which breaks the classic łstatic
control programž assumption, and requires introducing ap-
proximation into the analyses. Our analyses are then de-
fined in a ternary logic, which distinguishes effects which
definitely occur (necessary for, e.g., eliminating redundant
setting of configuration state) from those which maybe oc-
cur (relevant for reasoning about the statement reorderings
which emerge from many loop transformations).

Finally, we perform a series of case studies applying Exo
to optimizing high-performance kernels for specialized hard-
ware. We develop user-level backends for the Berkeley Gem-
mini neural network accelerator [16] (a software-controlled
systolic array similar to many TPU-like architectures) and
x86-64 with AVX-512. For each target, we focus on opti-
mizing matrix multiply and convolutional neural network
layers Ð among the most highly-optimized kernels in com-
mon libraries. Using Exo, we were able to easily develop
implementations competitive with state-of-the-art libraries
in a few days and a few dozen lines of code.

2 Example

Today’s large machine learning models (and scientific com-
puting) rely on highly tuned matrix-matrix multiplication
kernels (aka. GEMM). In order to introduce Exo, we will
show how to write and optimize such GEMM kernels, target-
ing one to an accelerator ISA designed to resemble machine
learning accelerators. These accelerators all focus on the ef-
ficient execution of small (e.g. 16 × 16), dense matrix-matrix
multiplication instructions.
Optimizing these kernels is primarily an exercise in or-

chestrating data movement, and only secondarily a matter
of selecting compute instructions, such as the actual matrix
multiplication primitive. Therefore, we need to explicitly
schedule loads and stores from custom, explicitly managed
accelerator memories. Lastly, much of the behavior of hard-
ware accelerators is controlled by infrequently changing con-
figuration state. Instructions to configure such state usually
flush the accelerator pipeline.

To model a particular hardware accelerator, users must de-
fine custom memories, instructions and configuration state.
This work is done once per accelerator, written as a hardware
library. Throughout the example, we will indicate whether
each piece of code lives in the application (GEMM) or can be
abstracted out into a reusable description of the hardware.

2.1 Exo Procedures, Compilation, and Scheduling

Consider matrix-matrix multiplication, written in Exo:

@proc

def gemm(A: R[128, 128] @ DRAM, B: ..., C: ...):

for i in seq(0, 128):

for j in seq(0, 128):

for k in seq(0, 128):

C[i, j] += A[i, k] * B[k, j]

in app.py

704

Exocompilation for Productive Programming of Hardware Accelerators PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

Exo is embedded in Python, and the function decorator
@proc indicates the beginning of an Exo function. Function
arguments are given by the syntax

⟨𝑛𝑎𝑚𝑒⟩:⟨𝑡𝑦𝑝𝑒⟩[⟨𝑠𝑖𝑧𝑒⟩] @ ⟨𝑚𝑒𝑚𝑜𝑟𝑦⟩

R is an abstract type for all numeric data types, which can
be specialized to specific precision types such as f32 and i8
via scheduling operations. For simplicity, the ⟨𝑠𝑖𝑧𝑒⟩ in this
example is constant, but usually refers dependently to other
function arguments. The @ symbol is a memory specification;
@DRAM means that the buffer is expected to be in DRAM.
Finally, for i in seq(0, 128) is a sequential for loop that
ranges from 0 to 127 (inclusive).

Exo compiles to C source code in the expected way:

void gemm(float *A, float *B, float *C) {

for (int i=0; i<128; i++) {

for (int j=0; i<128; i++) {

for (int k=0; i<128; i++) {

C[128*i + j] += A[128*i + k] * B[128*k + j];

} } } }

In order to target our accelerator, we need to expose a
16 × 16 matrix-multiplication as the inner loop nest. We do
this by using scheduling operations to rewrite the procedure.
In particular, we split(i,16,io,ii) (sim. for j, k) and then
reorder() the loops (see ğ3.3) to produce the following tiled
matrix multiplication:

def gemm(A: R[128, 128] @ DRAM, B: ..., C: ...):

for io in seq(0, 8):

for jo in seq(0, 8):

for ko in seq(0, 8):

for ii in seq(0, 16):

for ji in seq(0, 16):

for ki in seq(0, 16):

C[16*io+ii, 16*jo+ji] += A[..] * B[..]

in app.py

2.2 Memories

Many acceleratorsÐincluding ours in this exampleÐhave ex-
plicitly-managed memories. Performance critically depends
on how data movement to and from these memories is inter-
leaved with other computation. Therefore Exo puts schedul-
ing of data movement in the hands of the programmer. The
first step in doing this, is to define custom memories on a
per-accelerator basis. For example,

class ACCUMULATOR(Memory):

def alloc(...):

return f"{prim_type} {name} = hw_malloc({sz});"

def free(...):

return f"hw_free({name});"

def read(...): # also write, reduce

raise MemGenError('memory is not addressable')

in hw_lib.py

If a buffer is annotated with accumulator instead of
DRAM, then these alloc and free macros will determine the
C code that is generated when that buffer is allocated or freed.
(see ğ3) Furthermore, note that the accumulator memory

explicitly disables code generation for reading, writing and
accumulating into individual locations, preventing direct
access from C. Instead, wewill only allow custom instructions
(see below) to access this custom memory.

Supposing we have written custom accumulator and
scratchpad memories, we use stage_mem scheduling oper-
ations to stage C, A, and B into these memories:

def gemm(...):

res: R[...] @ ACCUMULATOR

a : R[...] @ SCRATCHPAD

b : R[...] @ SCRATCHPAD

for io in seq(0, 8):

for jo in seq(0, 8):

... # Load C to res

for ko in seq(0, 8):

Load A to a

for ii in seq(0, 16):

for ki in seq(0, 16):

a[...] = A[...]

... # Load B to b

Matmul of a and b

for ii in seq(0, 16):

for ji in seq(0, 16):

for ki in seq(0, 16):

res[..]+=a[..]*b[..]

... # Store res to C

in app.py

2.3 Instructions

We can clearly see opportunities in the above code to map
loops to semantically equivalent accelerator instructions.
However, to do this safely and soundly, the compiler needs
definitions of our accelerator instructions in terms of Exo’s
semantics. The key idea of exocompilation is to provide users
with a framework for defining these instructions in libraries,
without modifying the compiler itself. Below, we show an
example of such a definition for the scratchpad load.

@instr("config_ld({src}.strides[0]);\n"

"mvin({src}.data, {dst}.data, {m}, {n});")

def ld_data(n: size, m: size,

src: [R][n, m] @ DRAM,

dst: [R][n, 16] @ SCRATCHPAD):

assert m <= 16

for i in seq(0, n):

for j in seq(0, m):

dst[i,j] = src[i,j]

in hw_lib.py

Notice that this function has been annotated with @instr

rather than @proc. This indicates that the declaration asserts

equivalence between the Exo code in the body and the C
code template (i.e. macro) in the annotation. The resulting
ld_data function may be scheduled and called like any other
function, but Exo’s C code generator will instead emit the
C code łconfig_ld({src}.strides...)ž, with argument
placeholders {src} and {dst} substituted appropriately.

Exo provides a replace() scheduling directive (ğ3.4) for
matching code in one procedure with the body of another
procedure (including an @instr like ld_data), then replac-

ing the matched code with an appropriate procedure call.

705

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan Ragan-Kelley

2.4 Configuration State

We could issue this directive now to schedule the accelerator
instructions, however, the C code has fused the expensive
config_ld instruction to the mvin instruction we are really
interested in scheduling. Since the stride does not actually
change during the kernel, this will cause the accelerator
pipeline to repeatedly flush and stall. We must somehow
schedule the configuration instruction independently of the
actual load.
Therefore, we need a way to define hardware state. The

following code models the stride configuration state in Exo.

@config

class ConfigLoad:

src_stride : stride

@instr("config_ld({s});")

def config_ld_def(s : stride):

ConfigLoad.src_stride = s

in hw_lib.py

Here, ConfigLoad defines a global struct of configuration
variables, here containing a single src_stride field that
models the state of the stride hardware parameter. We also
write an instruction definition, config_ld_def, that updates
the src_stride field. Now we can write a new instruction
for the 16 × 16 load without the config_ld setup:

@instr("mvin({src}.data, {dst}.data, {m}, {n});")

def real_ld_data(...):

assert ConfigLoad.src_stride ==

stride(src, 0)

same as ld_data

in hw_lib.py

Using scheduling instructions, we will rewrite the body of
ld_data into a call to config_ld_def(), followed by a call
to real_ld_data(). First, we use the configwrite_at()

scheduling operation to rewrite ld_data into the following:

def ld_data(...):

assert m <= 16

ConfigLoad.src_stride = stride(src, 0)

for i in seq(0, n):

for j in seq(0, m):

dst[i,j] = src[i,j]

in hw_lib.py

Unlike previous scheduling operations, configwrite_at()
only partially preserves procedure equivalenceÐthe new
ld_data() is only equivalent up to the configuration state
ConfigLoad.src_stride. In general, Exo needs to reason
about this kind of program equivalence modulo configura-
tion state (see definition 4.1 and ğ6.2).
Since the statement ConfigLoad.src_stride = ... is

equivalent to the body of config_ld_def, and the state-
ment for i in seq(...):... is equivalent to the body of
real_ld_data, we can now replace() the body of ld_data
with the two calls, as desired:

def ld_data(...):

assert m <= 16

config_ld_def(stride(src, 0))

real_ld_data(n, m, src, dst)

in hw_lib.py

By following this same procedure, we can create instruction
abstractions for our 16x16 matmul and store instructions. At

last, we can replace the code in gemm with calls to ld_data

and inline its definition.
def gemm(...):

res: R[...] ...

for io in seq(0, 8):

for jo in seq(0, 8):

... # Loading C to res

for ko in seq(0, 8):

config_ld_def(stride(A, 0))

real_ld_data(16, 16, A[...], a[...])

... # etc. etc.

in app.py

We will hoist the call to config_ld_def using scheduling
operations reorder_stmts(), fission_after(), as well as
remove_loop(). Doing so will require Exo’s program analy-
sis to both reason about when different statements commute

(can be reordered) as well as when they are idempotent (allow-
ing the loop to be removed). To further complicate matters,
the presence of global, mutable configuration state means
that fully precise analyses are undecidable, and thus impossi-
ble in Exo. By using a ternary logic (ğ5), Exo can distinguish
between memory locations that are definitely written to (a
necessary condition for idempotency) and locations that are
maybe written to (the relevant condition for commutativity).

def gemm(...):

config_ld(stride(A, 0))

res: R[...] ...

for io in seq(0, 8):

for jo in seq(0, 8):

... # Loading C to res

for ko in seq(0, 8):

real_ld_data(16, 16, A[...], a[...])

... # etc. etc.

in app.py

All of the above code transformations are achievable using
the scheduling primitives discussed in Section 3. Full defi-
nitions of the memory, configuration, and load instructions
for the Gemmini accelerator can be found in supplemental
appendix G.1

3 The Exo Language and System

The Exo system consists of an imperative programming lan-
guage (ğ3.1), means of defining hardware targets via libraries
(ğ3.2), and a rewrite-based scheduling system (ğ3.3, 3.4). Fig-
ure 1 shows the Exo system from the standpoint of a particu-
lar program being compiled. In this section, we explain each
part of this process.

3.1 The Exo Language

Exo is a familiar imperative language in the mold of the
static control program model [12]. It supports for-loops, if-
conditions, arrays and procedures, but not while-loops or
recursion. A BNF grammar for its formal core is defined
later (Fig. 3). In addition to that grammar, the full language
supports stride values and expressions, as well as memory
annotations, both of which were shown in the example (ğ2).

1Appendices are available as Supplemental Material on the ACM Digital

Library.

706

https://dl.acm.org/doi/10.1145/3519939.3523446#sec-supp

Exocompilation for Productive Programming of Hardware Accelerators PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

Type Check

*.exo Bounds Check

Assert Check

Memory/Precision Check

Codegen
*.c

Frontend
Backend

User schedules via rewrites (§3.3)

User defined (§3.2):
�Memory
�Config
� Instructions

.split()

.reorder()
…
.unroll()
.inline()
.replace() (§3.4)

Figure 1. Exo system overview

Six relatively standard (but not universally adopted) fea-
tures of Exo are worth discussing further: (1) control/data
separation, (2) mutable global control state, (3) dependently
typed arrays [38], (4) array windowing/slicing, (5) explicit
+= reduction primitives, and (6) static assertions.
(1) Exo is built around a distinction between control and

data values. Control values (types int, bool, size, etc.)
are constrained so that they may be analyzed more pre-
cisely. Arithmetic on integer control values must be quasi-
affine, meaning that values can only be multiplied, divided,
or modulo-ed by an integer literal. Expressions inside loop
bounds and branches must be control values. Meanwhile,
data values (types R, f32, i8, etc.) are floating-point or fixed-
point numbers stored in scalars or arrays. There are no re-
strictions on allowed computations between data values. (2)
Configuration state (ğ2) is introduced via structs of variables
using @config and modeled formally as global variables (ğ4).
Unlike the other sources of control values, configuration
state is mutable. Consistent with the idea of static control
programs, Exo currently prohibits any dependence of control
values on data-values, regardless of whether those control
variables are local or global.

(3) Dependently typed arrays allow sizes to be specified
by control value expressions of strictly positive value. Exo
then performs static bounds checks, guaranteeing memory
safety without incurring any of the costs of dynamic bounds
checks. This is made possible by the control/data separation
idea. (4) Arrays in Exo are further extended with support
for windowing (aka. slicing) via the x[lo:hi] syntax. Cre-
ating a window does not copy data; instead, reading from
and writing to locations in a window accesses the under-
lying buffer (e.g. if y = x[3:8] then y[2] == x[3+2]). In
particular, note that windows may be lower-dimensional
than their underlying buffers by slicing some indices, while
point-accessing others. For instance, x[0:n,j] creates a 1-
dimensional window on column j of matrix x. (5) In addition
to primitive reading and writing, reduction via the += syn-
tax is supported as a special commutative and associative
operation from the point of view of program analysis.

(6) Finally, we allow static assertions about control values
to be made at the beginning of procedures. These asser-
tions act as pre-conditions and not as dynamic tests. Program
analysis within a procedure may assume its asserted pre-
conditions, whereas a calling procedure is only valid if it
ensures that the callee’s pre-conditions are true.

3.1.1 Backend Checks: Precision and Memory. Type-
checking, bounds-checking, and assertion checking are all
front-end checks on Exo code. By contrast, consistency of
data-variable precision types as well as consistency of mem-
ory annotations are performed as back-end checks immedi-
ately prior to code generation. Exo requires all data-expres-
sions to have consistent precision, (e.g. multiplying an f32

and i8 is forbidden) but inserts type-casts as necessary just
before writing or reducing data values.

3.1.2 Code Generation. Exo is designed to generate hu-
man-readable C-code that is more or less a syntactic trans-
lation of the corresponding Exo code. This enables the pro-
grammer to more easily integrate Exo with existing tools
and workflows. There are a few non-obvious details with this
translation that merit discussion. First, all data values (in-
cluding scalars, buffers, and windows) are passed by pointer
rather than by value. This is necessary even in the case of
scalars to allow łreturningž modified scalar values to a caller.
Second, windows are compiled to structs containing both
the data pointer and stride values, since the static size of
a window is insufficient to compute a linear address into
the underlying buffer. Lastly, we translate static assertions
into compiler-specific optimization hints to help improve
downstream analyses and optimizations.

3.2 Hardware Targets as Libraries

To add support for a new hardware accelerator to Exo, pro-
grammers write a library, rather than a compiler backend.
These libraries use three key features of the Exo language: (1)
memories, (2) instructions, and (3) configuration state. Using
these features, an Exo programmer can hand-write code to
target a given accelerator, or use scheduling to rewrite a
simple program into one targeting a given accelerator (ğ3.3).
Defining hardware in libraries has two advantages over

defining hardware in compiler backends (as Halide, TVM,
LLVM and most compilers do). First, hardware vendors do
not need to maintain compiler forks in order to protect pro-
prietary details of their hardware. Second, the cost of adding
support for new hardware is significantly reduced. Our ex-
perience adding support for new hardware to both Exo and
Halide suggests that the library approach requires at least
an order of magnitude less development time.

3.2.1 Memories. By default, all Exo buffers are assumed
to reside in system DRAM and are managed using standard
malloc and free. However, hardware accelerators often re-
quire modeling buffers that are resident in special acceler-
ator memories, are pinned to special address ranges in the
global address space, or otherwise exhibit strange behavior.
To support these scenarios, Exo allows users to tag buffer
and window types with a memory annotation. For example,
x : f32[n] @ MEM says that the vector x lives in a custom
memory MEM. These custom memories are defined by sub-
classing a Memory base class (ğ2) and overloading methods.

707

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan Ragan-Kelley

Exo allows custom memories to change code generation
for buffer alloc, free, and windowing via string interpola-
tion. The author of a custom memory chooses whether to
allow standard reading and writing the buffer (e.g., if the
memory simply changes the memory management policy) or
disable all usual accessing of the memory. The latter option
is ideal for modeling hardware scratchpads, which should
only be accessed using custom instructions. Such improper
accesses are prevented by łbackend checks.ž In general, mem-
ory annotations are ignored during scheduling.

3.2.2 Instructions. Instructions in Exo are procedures
that are annotated with a macro/string-template. For ex-
ample, given a vector load procedure with the signature
load(n : size, dst : f32[n], src : f32[n]), we can
make it into an instruction by annotating it with @instr(

"hw_ld({src},{dst},{n})") instead of @proc. When code
generating calls to instructions, this annotation string is used
instead of a sub-procedure call. Arguments are interpolated
into the template as strings. This works as well for schedul-
ing fine-grained intrinsics as it does for coarse-grained calls
to existing microkernels or library calls.

As a result, the annotated Exo procedure has no effect on
code generation, but instead serves as a semantic specifica-
tion of the instruction for the purposes of checking cor-
rectness and program equivalence (for scheduling). This
approach to an instruction mechanism has the following
benefits and tradeoffs. First, programmers need not learn
any additional specification language beyond Exo. Second,
Exo entrusts programmers with the responsibility of veri-
fying the link between the Exo procedure and annotation.
Third and finally, programmers can use instructions in clever
ways, including as an escape hatch. For example, a prefetch
instruction can be modeled using a no-op procedure and
thereby be inserted anywhere.

3.2.3 Configuration State. As we saw in ğ2, Exo models
hardware configuration state via global structs of control
variables annotated by @config. When defining configura-
tions, programmers have the choice of realizing them as
DRAM-resident data or disabling direct access to the config-
uration state (similar to disabling direct reading and writing
of a memory). In the latter case, no global struct is generated.

3.3 Scheduling via Rewrites

Rather than directly writing code that uses a hardware li-
brary, Exo users transform a simple program into an equiva-
lent, but more complex and high-performance version, tar-
geted to the specific hardware accelerator. This transforma-
tion is accomplished via successive rewriting of the applica-
tionÐa process called scheduling.
Because Exo is an embedded DSL, schedules are written

as meta-programs in the host language (Python). Each prim-
itive scheduling operator (Figure 2) takes a procedure p plus
some other arguments as input, and returns an equivalent,

Command Transform

p.reorder(i,j)
for i:

for j:
⇝

for j:

for i:

p.split(i,c,io,ii) for i<I:⇝
for io<I/c:

for ii<c:

p.unroll(i) for i:⇝
for 0:

...

p.inline(foo) inline a callsite of foo in p

p.set_memory(a,MEM’) a @ MEM⇝ a @ MEM’

p.set_precision(a,typ’) a : typ⇝ a : typ’

p.call_eqv(foo,foo’) call foo’ at a callsite of foo

p.bind_expr(a,a’) s⇝

a’ : R

a’ = a

s[a ↦→ a’]

p.stage_mem(a,a’,s) s⇝

a’ : R[]

for i:

a’ = a

s[a |↦→ a’]

for i:

a = a’

p.bind_config(config,a) s⇝
config = a

s[a ↦→ config]

p.lift_alloc(a:R)

for i:

a : R

s

⇝

a : R

for i:

s

p.fission_after(s1)

for i:

s1

s2

⇝

for i:

s1

for i:

s2

p.reorder_stmts(s1,s2)
s1

s2
⇝

s2

s1

p.configwrite_at(s,config,e) s⇝
s

config = e

p.replace(s,foo) s⇝ foo(ńinferredż)

p.add_guard(s,e) s⇝
if e: s

else: s

p.fuse_loop(i)

for i:

s1

for i:

s2

⇝

for i:

s1

s2

p.lift_if(if c: s)
for i:

if c: s
⇝

if c:

for i: s

p.partition_loop(i,c)

for i in lo,hi:

⇝

for i in lo,c:

for i in c,hi:

p.remove_loop(i)
for i:

s
⇝ s

Figure 2. Some primitive Exo scheduling operators. Each
operator rewrites 𝑠0⇝ 𝑠1 within a procedure p. This sort of
rewrite based scheduling makes it easier to expand the list of
primitive operators, since the correctness of each operator
is independent of the correctness of each other operator.

rewritten procedure as output. Most of these operators re-
quire pointing at a location within the procedure. In our
prototype, this is accomplished via simple syntactic pattern
matching strings. For instance, src : _ points at the first
allocation of a buffer named src, and for i in _: _ #2

708

Exocompilation for Productive Programming of Hardware Accelerators PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

points at the third loop in p with an iteration variable named
i. This API is currently being re-designed, but was sufficient
to demonstrate the benefits of rewrite-based scheduling.

Exo advances the idea of user-scheduling in two important
ways. First, like Lift and Elevate [19, 31] but unlike Halide
and TVM, scheduling operators are rewrites of programs,
rather than arguments to a monolithic lowering process. As
a result, the implementation and correctness of a schedul-
ing primitive is independent of each other primitive. This
makes the Exo implementation much simpler and easier to
maintain. Importantly, Exo rewrites imperative rather than
functional programs (Lift and Elevate). This makes checking
the correctness of primitive rewrites more complex (ğ5,F).

Second, Exo supports scheduling of programs decomposed
into procedures. This happens via the inline(), call_eqv(),
and replace() primitives. inline() simply inlines a proce-
dure’s body at some call site, and replace() can be thought
of as the inverse of inline() (see next section). call_eqv()
on the other hand replaces a call to some sub-procedure f
with a call to an equivalent sub-procedure f’. This equiva-
lence is tracked by provenance, since the Exo system records
the sequence of transformations by which fwas transformed
into f’. This concept of an equivalent sub-procedure is com-
plicated by those scheduling primitives which pollute con-
figuration state (e.g. bind_config()). To handle these, Exo
tracks a lattice of different equivalence relations, modulo
different parts of the configuration state (ğ6).
This provenance tracking system also enables an impor-

tant optimization: when constructing SMT queries we may
use the simplest equivalent (including configuration) defini-
tion of a procedure when constructing SMT queries. This
is necessary to keep the cost of calling the solver low as
scheduling complicates a procedure.

3.4 Code Replacement & Instruction Selection

The replace() scheduling primitive takes a designated state-
ment block s and replaces it with a call to a designated sub-
procedure foo. In particular, when foo is an @instr, this
rewriting performs instruction selection. In other cases, it
allows Exo programmers to manage code size trade-offs, as
well as more neatly abstract and organize their code.

Our implementation of replace() is based on a form of
unification modulo linear equalities. First, we attempt to
unify (i.e. pattern match) the body of the sub-procedure foo
with the designated statement block s. When doing this,
the arguments of foo are designated as unknowns, the free
variables of s as known symbols and any symbols intro-
duced/bound in the body of foo or within s are unified. The
ASTs are required to match exactly with respect to state-
ments, and with respect to all expressions which are not
simply integer typed control. Equivalences between integer
typed control expressions are recorded as a system of linear
equations to be solved in a second step.

If Exo did not support windowing, then we could deter-
mine expressions for the unknown argument variables by
symbolically solving the resulting linear system of equa-
tions. However, the possibility of windowing expressions as
arguments forces us to make categorical choices between
different possible windowing expressions, resulting in dis-
junctions as well as conjunctions of linear equalities. For
example, if replace is asked to infer a 1-dimensional window
onto a 2-dimensional buffer x, it could infer an expression
of the form x[i,jlo:jhi] or of the form x[ilo:ihi,j]. To
handle this complication, we observe that all inferred integer
expressions must be affine combinations of the known, free
variables. Therefore, we can transform our symbolic linear
system problem into a linear system in the unknown coeffi-
cients of these affine expressions. Once encoded in this way,
we can discharge the problem to an SMT solver.

4 Formal Core Language

In order to define our program analysis, we provide a for-
mal definition of the core of Exo, including a denotational
semantics. The core idea is that statements denote store-
transforming functions of type Σ → Σ. Using these seman-
tics we can define equivalence of Exo programs as functional
equivalence of their denotations. A scheduling transforma-
tion can then be said to be safe when it transforms between
equivalent Exo programs.

4.1 Mathematical Model of Exo Programs

The main concept in our mathematical model of Exo pro-
grams is the store, which represents the program state at
any given point during its execution. The simplest model
of a store 𝜎 ∈ Σ would be a partial function from variable
names to values. However, we must complicate this naive
model in a few ways. Rather than present the full definitions
(available in a supplemental appendix), we will focus on a
high level gloss of the ideas here.
Control values are modeled as Boolean or integer values

(in B and Z) while data values are modeled as real numbers
(in R). Names of variables are drawn from a set of identifiers
Name. Additionally, we rely on exceptional values to capture
errors 𝜖 and unknown or uninitialized data ⊥. For simplicity,
we assume that all built in functions on data (basic arithmetic
and the math library) are total, so that e.g. 0/0 is not an error.
The first complication is that we need to model buffers

and windows. Buffers can be thought of as maps from co-
ordinate tuples to data Z𝑚 → (R ⊎ {⊥, 𝜖}), where ⊥ desig-
nates uninitialized but allocated memory, whereas 𝜖 desig-
nates out-of-bounds memory. These buffers are placed in
the store Σ at special addresses ℓ ∈ Name that are disjoint
from names used in the program. Then windows can be
modeled as a pair of a buffer address ℓ and affine-indexing
function 𝜙 ∈ Z𝑛 → Z𝑚 . For instance, reading a window at
coordinates 𝑖 would translate to the lookup 𝜎 (ℓ) (𝜙 (𝑖)).

709

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan Ragan-Kelley

Havingmodeled buffers andwindows, we can define stores
𝜎 ∈ Σ as partial functions from Name to buffers, windows,
or control values. In order to further capture the concept of
program crashes (which should never happen for well-typed,
well-bounded and assertion-satisfying programs) we expand
the domain of stores to include the special value 𝜖 . We may
assume that all functions are strict with respect to 𝜖 , meaning
that once a program crashes it remains crashed.

4.2 Syntax, Semantics, and Well-Typed Programs

The syntax for the formal core of Exo is straightforward (Fig-
ure 3). The denotation of a statement or procedure 𝑠 is written
S J𝑠K and is a function Σ → Σ. The full definition of denota-
tions for expressions, statements and procedures are deferred
to a supplemental appendix (ğA). Note again that this core
language makes no reference to user-defined instructions or
memories. This is because the core program analysis is blind
to those featuresÐwhich only affect code generation. This
separation is what allows us to make the program analysis
extensible to new hardware backends.
Our focus in this paper is not on basic type-checking

(which is standard) or even bounds-checking and assertion-
checking (which are straightforward based on prior work
and repurposing our later analysis machinery). However, it
is worth re-iterating what guarantees all of these front-end
checks provide for Exo programs. First, all integer-valued
control expressions are constrained to be quasi-affine. Sec-
ond, all windowing and accessing of buffers and windows is
statically guaranteed to be in-bounds. Lastly, any procedure
call is guaranteed to satisfy the asserted pre-conditions of
the called procedure. Mutation of non-global control values
is also prohibited. The quasi-affine restriction in particular
is what allows us to translate arbitrary control expressions
into SAT queries modulo the Linear Integer Arithmetic (LIA)
theory, and thus discharge problems to an SMT solver.

4.3 Program Equivalence

Definition 4.1 (program equivalence). Let 𝑠1, 𝑠2 both be
Stmt or Proc. These two programs are equivalent, written
𝑠1 � 𝑠2 when the store-transforming functions they denote
are equivalent S J𝑠1K = S J𝑠2K on valid input storesÐi.e. stores
which are not in an error state and satisfy any precondition
assertions of 𝑠1 and 𝑠2, which are equivalent.

As we discussed earlier (ğ2), we often want to reason
about programs that are equivalent łup-to/excluding a set of
globals Lž because many transformations end up polluting
configuration state. We define a lattice of weaker equivalence
relations:

Definition 4.2 (program equivalence modulo globals). Let
𝑠1, 𝑠2 both be Stmt or Proc, and letL ⊆ Name𝑔𝑙𝑜𝑏𝑎𝑙 be a set of
globals to ignore. The two programs are equivalent łmodulo
Lž, written 𝑠1 �L 𝑠2 when ∀𝜎, 𝑥 ∉ L . S J𝑠1K𝜎 𝑥 = S J𝑠2K𝜎 𝑥 ,
with the same caveats about valid input stores.

𝜏𝑎 : ArgType F bool | int | R[𝑒∗]

𝜏𝑠 : SigType F (𝑥 : 𝜏𝑎) → 𝜏𝑠 | unit

𝜏 : Type F 𝜏𝑎 | R

note: we use ·∗ to mean 0 or more

𝑒 : Expr F 𝑥 variables

| 𝑜𝑝(𝑒∗) built-in operations

| 𝑒[𝑒∗] array read

| win(𝑒, 𝑤∗) window expression

𝑤 : WinCoord F 𝑒 point-access

| 𝑒..𝑒 interval-access

op ∈

{

+, -, *, /, mod, and, or, not,

==, <, <=, >, >=

}

∪ 𝐿𝑖𝑡𝑒𝑟𝑎𝑙𝑠

𝑠 : Stmt F 𝑠;𝑠 sequencing

| if 𝑒 then 𝑠 guards

| for 𝑥 in 𝑒..𝑒 do 𝑠 sequential loops

| alloc 𝑥(𝑒∗) array allocation

| 𝑒[𝑒∗]= 𝑒 array write

| 𝑒[𝑒∗]+= 𝑒 array reduce

| 𝑥 = 𝑒 global write

| 𝑝(𝑒∗) sub-procedure call

𝑝𝑑𝑒𝑓 : Proc F

proc 𝑝 : 𝜏𝑠
assert 𝑒

do 𝑠

𝐿 : Lib F
globals (𝑥 : 𝜏)∗

𝑝𝑑𝑒𝑓 ∗

Figure 3. Abstract Syntax for Exo core language

5 Effect Analysis & Transformation of
Programs

Our analysis of Exo programs is based on an effect analysis.
An effect 𝑎 extracted from a statement 𝑠 characterizes which
functions 𝑓 : Σ → Σ the statement 𝑠 could possibly denote
S J𝑠K. This effect analysis allows us to determine when code
transformations like 𝑠1;𝑠2 ⇝ 𝑠2;𝑠1 and 𝑠1;𝑠2 ⇝ 𝑠2 are valid.

This analysis will require us to define (1) effect-expressions
and environments, (2) a global symbolic data-flow analysis,
(3) location sets as a symbolic abstraction of store locations,
and finally (4) effects as an abstraction of programs. We can
then state safety conditions for various program rewrites
using these building blocks.

5.1 Ternary Logic

When extended with ⊥, B becomes a ternary logic with the
values true (true or 𝑇), false (false or 𝐹), and unknown (⊥).
Intuitively, this ternary logic will allow us to distinguish
between statements that are definitely true, and statements
that may be true. As detailed in supplemental appendix B,
this logic can be encoded in classical logic for the purposes
of targeting SMT solvers.
We define two additional operators for collapsing back

down from ternary to classical logic. 𝐷 𝑝 (łdefinitely 𝑝ž) is
defined by 𝐷𝑇 = 𝑇 , 𝐷⊥ = 𝐹 , and 𝐷𝐹 = 𝐹 ; 𝑀 𝑝 (łmaybe 𝑝ž)
is defined by𝑀𝑇 = 𝑇 ,𝑀⊥ = 𝑇 , and𝑀𝐹 = 𝐹 .

710

Exocompilation for Productive Programming of Hardware Accelerators PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

5.2 Effect Expressions

Effect Expressions both give us a way of expressing symbolic
values and of encoding sentences in a first-order logic, for
discharging to an SMT solver.

Definition 5.1 (Effect Expressions). We define the following
grammar of effect-expressions

𝑒𝑒 : EffExprF 𝑥 | 𝑐 | ⊥ | op(𝑒𝑒∗) | 𝑒𝑒? 𝑒𝑒 else 𝑒𝑒 | ∀𝑥 .𝑒𝑒

where every expression either has sort bool or sort int. The
operators are the same as the bool and int operators from
Figure 3. Recall that in the case of int operators, the pseudo-
affine condition means that the quotient for / andmod must
be a constant, and one side of ∗ must be a constant.

Definition 5.2 (Effect Environments).

𝛾 : EffEnv = (Name𝑔𝑙𝑜𝑏𝑎𝑙 ⊎ Name𝑙𝑜𝑐𝑎𝑙) → EffExpr

are partial functions that default to mapping 𝑥 to 𝑥 , not ⊥.
Effect environments abstract functions Σ → Σ with re-

spect to control values, not stores Σ. This is why they may
appear to be impredicative (mapping 𝑥 to 𝑥 by default). We
define substitution 𝛾 (𝑒𝑒) in the usual way. Using this, we can
define composition of two effect environments (𝛾 · 𝛾 ′)𝑥 =

𝛾 (𝛾 ′(𝑥)), which may also be resolved by substituting with 𝛾
inside the expressions bound by 𝛾 ′. This definition of substi-
tution extends naturally up to our later definitions of location
sets LocSet, and effects 𝑎.

5.3 Global Dataflow

The major complication in our program analyses is handling
mutable, global control stateÐwhich makes precise analysis
of program control logic undecidable. Our dataflow analysis
is symbolic (producing effect environments as a result) and
control-sensitive (symbolic values reflect guards wrapped
around statements). However we must make some kind of
approximation to force convergence on loops. We use a very
simple heuristic, expressed symbolically: If every loop itera-
tion does not change the value of a global variable 𝑥 , then
the loop behaves as an identity function. Otherwise, the loop
drives 𝑥 to the uncertain value ⊥. This usually suffices be-
cause configuration state that depends on the loop iteration
is usually meaningless outside of the loop.

We define global dataflow analysis ValG : Stmt → EffEnv

precisely in supplemental appendix C, along with lifting of
expressions to effect expressions Lift : Expr → EffExpr.

5.4 Location Sets

Definition 5.3 (Location Set).

L : LocSet F ∅ | {𝑥, 𝑒𝑒∗} | L ∪ L |
⋃

𝑥 L

| L ∩ L | L − L | filter(𝑒𝑒,L)

Location sets symbolically abstract sets of global and heap
locations in the store.

These sets support a set membership predicate (_ ∈ _) :
(Name × EffExpr𝑛) → LocSet → EffExpr and an is-empty
predicate (_ = ∅) : LocSet → EffExpr, both in the expected
way (see supplemental appendix D for details)

Note that because effect expressions are a ternary logic,
these location sets express upper and lower bounds on a set
of locations: points definitely not in the set, points definitely
in the set, and a penumbra of points ambiguously in the
set. We collapse these sets down to łclassical setsž using the
aforementioned operators: 𝐷L meaning points definitely
in the set, and 𝑀L meaning points that might be in the
set. Thus 𝑥 ∈ 𝐷L means 𝐷 (𝑥 ∈ 𝐿𝑠) and 𝑥 ∉ 𝑀L means
𝐷 (𝑥 ∉ L).

5.5 Effects

Definition 5.4 (Effects).

𝑎 : Effect F 𝑎;𝑎 | ∅ | Guard(𝑒𝑒, 𝑎) | Loop(𝑥, 𝑎)

| GlobalRead(𝑥) | GlobalWrite(𝑥)

| Read(𝑥, 𝑒𝑒∗) | Write(𝑥, 𝑒𝑒∗)

| Reduce(𝑥, 𝑒𝑒∗) | Alloc(𝑥)

This definition allows us to define the obvious transla-
tion of expressions (Eff 𝑒 : Expr → Effect) and statements
(Eff : Stmt → Effect) into effects (see supplemental appen-
dix E). Effects then allow us to define read, write, and reduce
location sets.
To start, we define the set of buffers allocated by and

visible to subsequent statements/effects:

A : Effect → LocSet

A Alloc(𝑥) = {𝑥}

A (𝑎1;𝑎2) = A(𝑎1) ∪ A(𝑎2)

A _ = ∅

Definition 5.5 (Locations of an Effect). Let RdG,WrG, RdH,
WrH, and R+H, be functions Effect → LocSet. To avoid re-
dundancy, define common cases for all such functions F :

F : Effect → LocSet

F Guard(𝑒𝑒, 𝑎) = filter(𝑒𝑒, F 𝑎)

F Loop(𝑥, 𝑎) =
⋃

𝑥 F 𝑎′

Sequencing is defined differently for read and write sets:

RdG (𝑎1;𝑎2) = RdG (𝑎1) ∪ (RdG (𝑎
′
2
) −WrG (𝑎1) − A(𝑎1))

WrG (𝑎1;𝑎2) = WrG (𝑎1) ∪ (WrG (𝑎
′
2
) − A(𝑎1))

RdH (𝑎1;𝑎2) = RdH (𝑎1) ∪ (RdH (𝑎
′
2
) −WrH (𝑎1) − A(𝑎1))

WrH (𝑎1;𝑎2) = WrH (𝑎1) ∪ (WrH (𝑎
′
2
) − A(𝑎1))

R+H (𝑎1;𝑎2) = R+H (𝑎1) ∪ (R+H (𝑎
′
2
) − A(𝑎1))

Each function detects its corresponding leaf-node:

RdG GlobalRead(𝑥) = {𝑥}

WrG GlobalWrite(𝑥) = {𝑥}

RdH Read(𝑥, 𝑒𝑒1, . . . , 𝑒𝑒𝑛) = {𝑥, 𝑒𝑒1, . . . , 𝑒𝑒𝑛}

WrH Write(𝑥, 𝑒𝑒1, . . . , 𝑒𝑒𝑛) = {𝑥, 𝑒𝑒1, . . . , 𝑒𝑒𝑛}

R+H Reduce(𝑥, 𝑒𝑒1, . . . , 𝑒𝑒𝑛) = {𝑥, 𝑒𝑒1, . . . , 𝑒𝑒𝑛}

F _ = ∅

711

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan Ragan-Kelley

From these five primitive sets we can define six other
useful sets:

Rd 𝑎 = RdG 𝑎 ∪ RdH 𝑎

Wr 𝑎 = WrG 𝑎 ∪WrH 𝑎

R+ 𝑎 = R+H 𝑎 −WrH 𝑎

All 𝑎 = Rd 𝑎 ∪Wr 𝑎 ∪ R+H 𝑎

Mod 𝑎 = Wr 𝑎 ∪ R+H 𝑎

RW 𝑎 = Rd 𝑎 ∪Wr 𝑎

5.6 Effects as Abstraction

The different objects we have talked about so far each ab-
stract some part of the program. For instance, the dataflow
analysis of a statement ValG J𝑠K is an abstraction of its deno-
tation S J𝑠K with respect to global values. Similarly, the effect
extracted from an expression Eff 𝑒 J𝑒K abstracts its denota-
tion E J𝑒K, and the effect extracted from a statement Eff J𝑠K
abstracts its denotation S J𝑠K. But what do we mean by this?

The effect abstraction 𝑎 for a statement 𝑠 with denotation
𝑓 guarantees a few properties. First, it provides an analogue
of the łframe axiomž from separation logic. If a location
𝑥 lies outside of 𝑀Mod(𝑎), then it is unmodified: 𝑓 𝜎𝑥 =

𝜎𝑥 . Second, if a location is in the write set 𝑥 ∈ 𝐷Wr(𝑎),
then the post-hoc value at that location 𝑓 𝜎𝑥 is determined
solely by the values at read locations 𝑦 ∈ 𝑀Rd(𝑎). Third,
if a location is reduced to 𝑥 ∈ 𝐷R+(𝑎), then the difference
between the initial and final value at that location 𝑓 𝜎𝑥 − 𝜎𝑥
is determined solely by values at read locations 𝑦 ∈ 𝑀Rd(𝑎).
Finally, so long as the values at read locations 𝑦 ∈ 𝑀Rd(𝑎)

are determined, then one of the three previous cases applies
to every store location, even if we can’t be certain which
set(s) the location is in.
Even more simply in the case of expression abstraction,

the effect 𝑎 of an expression 𝑒 with denotation 𝑓 : Σ → Val

guarantees one property: The value 𝑓 𝜎 is solely determined
by the values at read locations 𝑦 ∈ 𝑀Rd(𝑎).

5.7 Basic Program Rewrites

The preceding analysis objects allow us to turn program
equivalence checks into SMT queries.

Reorder statements. The rewrite 𝑠1;𝑠2 ⇝ 𝑠2;𝑠1 is safe
when Commutes Eff J𝑠1K Eff J𝑠2K holds. Commutativity of
statements is defined as non-interference of effects. A special
exception must be made for locations that are reduced.

Definition 5.6 (Commutativity).

Commutes 𝑎1 𝑎2 =

𝐷

(

Wr(𝑎1) ∩ All(𝑎2) = ∅ ∧ Wr(𝑎2) ∩ All(𝑎1) = ∅

R+(𝑎1) ∩ Rd(𝑎2) = ∅ ∧ R+(𝑎2) ∩ Rd(𝑎1) = ∅

)

Shadow statement. The rewrite 𝑠1;𝑠2 ⇝ 𝑠2 is safe when
Shadows Eff J𝑠1K Eff J𝑠2K holds. Whereas commutativity re-
quires reasoning about what definitely doesn’t intersect (and
hence what memory might be touched), shadowing requires
reasoning positively about what definitely is overwrittenÐ
which is why a one-sided approximation sets is insufficient.

Definition 5.7 (Shadowing).

Shadows 𝑎1 𝑎2 =

∀𝑥 ∈ 𝑀Mod(𝑎1) =⇒ (𝑥 ∉ 𝑀Rd(𝑎2) ∧ 𝑥 ∈ 𝐷Wr(𝑎2))

New config write. The rewrite 𝑠 ⇝ 𝑠;𝑥𝑔=𝑒 is always safe,
but only results in code that is equivalent modulo {𝑥𝑔}. As
we will soon see (ğ6.2), performing this rewrite in a context
requires satisfying additional conditions, but in isolation it
is very simple.

5.8 Loop Rewrites

When working with rewrites of loops, it is convenient to
abbreviate notation for an iteration variable being in bounds.
If the variable 𝑥 occurs in for 𝑥 in 𝑒𝑙𝑜..𝑒ℎ𝑖 do , then let
Bd(𝑥) = Lift J𝑒𝑙𝑜K ≤ 𝑥 < Lift J𝑒ℎ𝑖K in the following.

Loop reordering. One of the most basic non-trivial loop
transformations is loop-reordering. When can we rewrite
for 𝑥 do for 𝑦 do 𝑠 into for 𝑦 do for 𝑥 do 𝑠? This transfor-
mation is valid when the loop bounds commute with the
body, and when any loop iterations that are moved past each
other commute. To formulate these conditions, let 𝑎𝑥 be the
effect of the 𝑥-loop’s bound-expressions and 𝑎𝑦 similarly for
the 𝑦-loop. Let 𝑥 ′, 𝑦 ′ be copies of these iteration variables s.t.
𝑠 ′ = [𝑥 ↦→ 𝑥 ′] [𝑦 ↦→ 𝑦 ′]𝑠 . Let 𝑎 = Eff J𝑠K and 𝑎′ = Eff J𝑠 ′K.
Then the reordering condition may be precisely stated as
(

∀𝑥,𝑦. 𝑀Bd(𝑥,𝑦) =⇒ Commutes((𝑎𝑥;𝑎𝑦), 𝑎)
)

∧

(

∀𝑥,𝑦, 𝑥 ′, 𝑦 ′. 𝑀 (Bd(𝑥,𝑦, 𝑥 ′, 𝑦 ′) ∧ 𝑥 < 𝑥 ′ ∧ 𝑦 ′ < 𝑦)

=⇒ Commutes(𝑎, 𝑎′)

)

Loop fusion & fission. Another basic loop transforma-
tion is to fuse two loops together, or in reverse to fission
one loop in two. When can we rewrite for 𝑥 do 𝑠1;𝑠2 into
(for 𝑥 do 𝑠1);for 𝑥 do 𝑠2? This is possible when the loop
bound commutes with the first statement, and when the
statements that get reordered commute with each other.
Letting 𝑎𝑥 be the effect of the loop bounds, 𝑎1 = Eff J𝑠1K,
𝑠 ′
2
= [𝑥 ↦→ 𝑥 ′]𝑠2 and 𝑎′

2
= Eff

q
𝑠 ′
2

y
we can state fission

conditions precisely as

(∀𝑥 . 𝑀Bd(𝑥) =⇒ Commutes(𝑎𝑥 , 𝑎1)) ∧
(

∀𝑥, 𝑥 ′. 𝑀 (Bd(𝑥, 𝑥 ′) ∧ 𝑥 ′ < 𝑥) =⇒ Commutes(𝑎1, 𝑎
′
2
)
)

Loop removal. In order for the rewrite for 𝑥 do 𝑠 ⇝ 𝑠

to be safe, the variable 𝑥 must not be free in 𝑠 , 𝑠 must be
idempotent, and the loop must run for at least one iteration.
If 𝑎 = Eff J𝑠K, then these conditions are precisely

(∃𝑥 . 𝐷Bd(𝑥)) ∧ Shadows(𝑎, 𝑎)

6 Contextual Analyses

In order to make our program rewriting primitives useful,
we must be able to modify some fragment of a procedure in
a context. In this section, we define one-holed statement con-
texts, define how to process them, and extend equivalences
between statements to account for context.

712

Exocompilation for Productive Programming of Hardware Accelerators PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

6.1 Contexts & Derived Quantities

Definition 6.1 (Contexts).

𝐶 : Ctxt F • | 𝐶;𝑠 | 𝑠;𝐶 | for 𝑥 in 𝑒..𝑒 do 𝐶

| if 𝑒 then 𝐶

The expression 𝐶 [𝑠] means a statement resulting from sub-
stituting the hole (•) in context𝐶 with statement 𝑠 . Similarly,
we can have a Proc context: proc 𝑝 : 𝜏𝑠 assert 𝑒 do 𝐶 .

We define three derived quantities from a context/state-
ment pair 𝐶/𝑠: (1) CtrlPred J𝐶K 𝑠 : EffExpr, a predicate ex-
pressing under what conditions the statement 𝑠 will execute;
(2) PreValG J𝐶K 𝑠 : EffEnv, capturing the dataflow values
right before executing 𝑠 ; and (3) PostEff J𝐶K 𝑠 : Effect, telling
us the effect of context code that executes after 𝑠 . (See sup-
plemental appendix F for details.)

6.2 Context Extension

Using these tools we can get from an argument of the form
𝑠1 � 𝑠2 back up to an argument of the form 𝐶 [𝑠1] � 𝐶 [𝑠2].
Thus, we can reach into the body of some procedure and
perform a local rewrite, while maintaining equivalence of
the overall procedure.

Consider a context 𝐶 with statements 𝑠1 and 𝑠2, as well as
a set of global names L to consider equivalence łup to.ž

Let 𝑝 = CtrlPred 𝐶 𝑠1
𝛾 = PreValG 𝐶 𝑠1
𝑎 = PostEff 𝐶 𝑠1

L ′
= 𝑀 (L −WrG 𝑎)

𝑠 ′
1
, 𝑠 ′

2
= 𝛾 (𝑠1), 𝛾 (𝑠2)

If (𝑀𝑝 =⇒ 𝑠 ′
1
�L 𝑠

′
2
) ∧ 𝐷 (RdG 𝑎 ∩ L = ∅)

Then 𝐶 [𝑠1] �L′ 𝐶 [𝑠2]

7 Case Studies

7.1 Gemmini

Using Exo, we developed highly-optimized schedules for
Gemmini [16], a DNN accelerator, which significantly out-
performed DNN kernel implementations that had been hand-
written by Gemmini’s designers.

We targeted Gemmini’s default architectural instantiation,
which include a 16x16 systolic array that performs block
matrix multiplications, a 256KB scratchpad for quantized
inputs and weights, and a 64KB accumulator for partial sums.
Gemmini’s instruction set architecture (ISA) includes low-
level instructions to move strided matrices to and from the
scratchpad, as well as instructions to calculate dot products
and perform non-linear activations on this data.

Gemmini also ships with a hand-written C library for com-
monDNN kernels. This library wraps calls to Gemmini’s low-
level ISA in statically-scheduled, hand-tuned loops. However,
Gemmini can also be built with hardware loop unrollers that
dynamically schedule these kernels to maximize overlap be-
tween data loads, data stores, and matrix multiply operations.

512 x 512 x 512

12544 x 256 x 64

12544 x 64 x 256

3136 x 512 x 128

3136 x 128 x 512

784 x 1024 x 256
0

20

40

60

80

100

%
Ut

ili
za

tio
n

18% 14%
20% 16% 19% 18%

79%

49%
40%

62% 67% 62%

95%

72%

99%
90% 87%

98%
Old-lib Exo-lib Hardware

(a) matmul utilization (as a percentage of peak FLOPS). X axis

labels are the size of matrices in 𝑁 x𝑀 x 𝐾 .

56 x 64 x 64 28 x 128 x 128 14 x 256 x 256
0

20

40

60

80

100

%
Ut

ili
za

tio
n

25% 27% 25%

71% 72% 78%

95% 91% 94%

Old-lib Exo-lib Hardware

(b) conv utilization (as a percentage of peak FLOPS). X axis labels

are the shape of convolution in output dimension x output channel

x input channel.

Figure 4. Performance of Exo-generated code on the Gem-
mini DNN accelerator. Exo-generated code achieves much
higher performance than the DNN kernels hand-written by
the designers of Gemmini (Old-lib). Gemmini’s dynamically-
scheduled hardware loop unrollers (Hardware) outperform
Exo by using additional hardware resources, but therefore
require additional chip area and power consumption.

The hardware implementations typically run much faster
than the software implementations at the cost of hardware
complexity, area, power consumption, and reduced sched-
uling flexibility. The hardware kernels also have fixed loop
orders and dataflows, while the software can adapt these to
different tensor shapes.
We implemented kernels for matrix multiply (matmul)

and convolutional (conv) layers in Exo and compared their
performance against Gemmini’s handwritten C library and
hardware loop unrollers. The results are shown in Figures 4a
and 4b, respectively. The tensor shapes in both are selected
from those in a ResNet-50 DNN with a batch size of 4.

On average, Exo-generated code outperforms Gemmini’s
handwritten C library by 3.5× on the matmul sizes listed
above, and achieves 67% of the performance of the hardware

713

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan Ragan-Kelley

loop unrollers. For the convolutions listed, it runs 2.9× faster
than the handwritten library, and is competitive with the
hardware loop unroller, achieving 79% of its performance.
Note that the hardware loop unrollers use optional hard-

ware resources (increasing area and power consumption)
which are not available to Exo or the handwritten C library.
However, we expect that changing Gemmini’s ISA to support
coarser-granularity instructions and better schedules may
be able to close this performance gap in the future, provid-
ing software-programmable performance comparable to the
inflexible hardware loop-unrollers.
Finally, Exo enabled faster co-design of Gemmini’s hard-

ware-software interface. When we started targeting Gem-
mini, its low-level hardware configuration instructions had
many side effects which made optimizations difficult to rea-
son about, limiting the performance we could achieve. We
worked with the Gemmini hardware designers to disaggre-
gate these configuration instructions into more orthogonal
components; e.g. instructions which configured Gemmini’s
memory units would no longer have any side effects on the
arithmetic units. 46 lines in Gemmini’s handwritten C li-
brary had to be updated after this change, compared to only
5 in Exo’s implementation. Exo made it easier for program-
mers to target fluid and changing hardware targets, which
is common when developing new accelerators.

7.2 x86

As an acid test of the language design, we optimized matrix-
matrix multiplication (sgemm) for x86, where we can com-
pare against state-of-the-art libraries that run near theoreti-
cal peak compute throughput. We chose to target single-core
x86 with AVX512 extensions.2

Recall that the computation is given by𝐶 += 𝐴 ·𝐵 where𝐶
is𝑀×𝑁 ,𝐴 is𝑀×𝐾 , and 𝐵 is𝐾×𝑁 . Our Exo implementation
decomposes the problem as follows: at the deepest level
of blocking, a register-blocked micro-kernel accumulates
the inner dimension into a 6 × 64 panel of 𝐶 , the output
matrix. The level above the micro-kernel handles edge cases
by dispatching to specialized versions of the micro-kernel
for each edge case. Along the bottom, five distinct kernels
are needed as they are always 64 elements wide and never
0 or 6 tall; similarly, four distinct kernels are needed along
the right. The variable tail on the right edge is handled by
masked loads. Finally, one level above this handles staging
memory and blocking.
Every one of these routines was produced by scheduling

and specializing a single, naive implementation of sgemm
consisting of three nested loops. Unification and equivalent-
call replacement were crucial for avoiding any sort of error-
prone, manual optimization.

2Although multi-core implementations are valuable, single-core workloads

are representative of practice (ML inference in interactive web services

is often run batch-parallel on single-core kernels), and the baselines are

highly-optimized.

0 250 500 750 1000 1250 1500 1750 2000

Dimension (𝑀 = 𝑁 = 𝐾)

0.00

22.93

45.87

68.80

91.73

114.67

137.60

G
FL

O
P
/s

exo

MKL

OpenBLAS

0%

17%

33%

50%

67%

83%

100%

%
o
f
p
ea
k

(a) sgemm performance on square matrices. We approximately

match other systems on square matrices.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Aspect ratio (𝑀/𝑁)

0.00

22.93

45.87

68.80

91.73

114.67

137.60

G
FL

O
P
/s

exo

MKL

OpenBLAS

0%

17%

33%

50%

67%

83%

100%

%
o
f
p
ea
k

(b) sgemm performance with fixed workload and variable output

aspect ratio. 𝐾 = 512 and𝑀 × 𝑁 = 512
2, with the ratio of𝑀 to 𝑁

varying. We match OpenBLAS performance across aspect ratios.

Figure 5. sgemm performance compared to state-of-the-art
libraries on x86. Benchmarks were run on one core of an
Intel i7-1185G7 running at 4.3GHz.

The performance results are shown in Figure 5. All bench-
markswere run on an Intel i7-1185G7 at 4.3 GHz, a Tiger Lake
CPU with AVX-512 instructions and peak single-precision
floating-point performance of 137.60 GFLOPs. We tested
our sgemm against the hand-optimized implementations
in Intel’s MKL and the open-source OpenBLAS in two ex-
periments. First (Fig. 5a), we tested square matrices , so
𝑀 = 𝑁 = 𝐾 . Each implementation performs quite closely
(within measurement noise), between 80-95% of theoretical
peak FLOPS across the parameter range.

Second (Fig. 5b), we tested our sgemm on a fixed workload,
but with a variable aspect ratio for 𝐶 . Specifically, we fix the
inner dimension 𝐾 = 512 and the product𝑀𝑁 = 512

2, then
we sweep across the ratio𝑀/𝑁 keeping the total FLOP count
identical across experiments. Here, Exo matches OpenBLAS
almost exactly, but MKL pulls ahead of both implementations
when the aspect ratio is very far from square. MKL includes

714

Exocompilation for Productive Programming of Hardware Accelerators PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

Impl. N W H IC OC % of peak

Exo 5 82 102 128 128 40.50%
Halide 5 82 102 128 128 40.59%
oneDNN 5 82 102 128 128 40.55%

Figure 6. Summary of x86 conv performance results. Single-
threaded performance of various implementations with no
padding and unit stride. A ReLU activation is applied. Bench-
marks were run on an Intel i7-1185G7 running at 4.3GHz on
a single core. The size was chosen to match the previously-
published hand-scheduled Halide implementation. All three
specialize or JIT to tune their code to specific sizes.

more specialized kernels for these extreme aspect ratios,
which would be natural to do with further scheduling in Exo,
as well.
For a final experiment, we tried to replicate the convolu-

tional layer performance of a highly-tuned implementation
provided by the Halide project. State of the art convolutions
specialize or JIT-compile code templates to particular input,
output, and kernel sizes. In Halide’s case, it specialized to
a batch size of 5, a kernel size of 3 × 3, an output size of
80 × 100, and 128 channels for both input and output. There
is no padding and unit stride is used. We configured Intel’s
oneDNN convolution to use these parameters and scheduled
a basic description of convolution in Exo to these parameters,
too. The results are shown in Figure 6. Our conv performs
almost identically to the optimized baselines.
Overall, we believe these results show that Exo can be

used to achieve performance competitive with state-of-the-
art, highly hand-tuned libraries on x86.

7.3 Code Size

Figure 7 summarizes some statistics regarding the size of
Exo programs relative to hand-written C baselines.
On x86, our SGEMM schedule instantiates many special-

ized micro-kernels for handling loop tail cases at higher
levels. Unlike Gemmini, it does not have SGEMM-specific
hardware to utilize that might reduce the scheduling burden.
Even so, the basic algorithm is expressed in 11 statements
(the function signature, three loops, an accumulation state-
ment, and a handful of size assertions) and 162 scheduling
directives. The generated C code totals 831 source lines of
code This already constitutes a nearly 5x code size reduction,
but a comparison to OpenBLAS (an established open-source
implementation) is even more favorable: at least 1690 source
lines of code3 make up that implementation. MKL is more
complex, still.

Although the x86 conv implementation is łonlyž half the
size of the equivalent generated C, it is much more flexible

3Summing the source line counts of the files mentioned in kernel/-

x86_64/KERNEL.SKYLAKEX for non-transposed SGEMM gives a very loose

lower bound

App. Platform C (gen) C (ref) Alg. Sched.

matmul Gemmini 462 313 23 43
conv Gemmini 8317 450 26 44
sgemm x86 846 >1,690 11 162
conv x86 102 >5,400 23 39

Figure 7. Source code sizes for matrix multiplication and
convolutional layer on Gemmini and x86. Gemmini imple-
ments a fixed-point matrix multiply neural network layer
(with fused ReLU activation), while x86 implements the BLAS
SGEMMkernel. Both implement a standard 2D convolutional
layer with ReLU activation. The Exo sources are counted in
lines of code for the algorithm and number of directives for
the schedule. This is compared to the size of both the Exo-
generated C and state-of-the-art reference implementations
(Gemmini standard library, OpenBLAS, and oneDNN, respec-
tively) in source lines of code.

since other specialized versions can be quickly instantiated
by meta-programming the schedule in Python. The size of
the most comparable open-source implementation, Intel’s
oneDNN, is difficult to measure; just one file in the imple-
mentation measures well over 5000 source lines of code4. The
size of the Halide code and schedule was nearly identical to
ours: 64 relevant lines, compared to 62.
The story is similar for our Gemmini kernels. Both the

matmul and conv Exo implementations are an order of mag-
nitude smaller than the original, handwritten C implementa-
tions. The large generated code sizes reflect the high degree
of loop unrolling in the generated schedules. A real appli-
cation would likely either resort to the C preprocessor to
manage this complexity, or not attempt the transformation
at all (or as aggressively) beyond whatever the C compiler
might choose to do automatically.

8 Related Work

User-Schedulable Languages Exo builds on the idea of
programmer-visible scheduling languages, popularized in
part by Halide and TVM, and used in many recent languages
and systems [5, 8, 18, 21, 24, 28, 29, 34, 35, 41]. The ex-
plicit control over compiler transformations offered by user-
schedulable languages was foreshadowed earlier in many
script- or pragma-based compiler tools in HPC [7, 10, 11, 20,
39], and the definition of parametric optimization spaces in
SPIRAL [15], all of which have been applied to matrix-matrix
multiply and related kernels. The polyhedral loop optimiza-
tion community has simultaneously explored similar ideas
in its own context [3, 4, 32, 36, 37, 40].
Exo builds on attempts to formalize guarantees of safety

and equivalence under scheduling in Halide [30]. In sharp
contrast to Halide, Exo adopts the approach of implementing
scheduling via algebraic rewrites within a core language.

4src/cpu/x64/jit_avx512_common_conv_kernel.cpp

715

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan Ragan-Kelley

While prior systems which follow this approach work mostly
on restricted functional languages, where equivalence before
and after rewrites is straightforward (and often not formally
checked) [19, 25, 31], Exo rewrites imperative code, and relies
on effect analyses which reduce to SMT for verification.

Instruction Selection Exo’s instruction/procedure mapping
mechanism is related to the classic problem of instruction
selection [2]. Traditional instruction selection applies local
pattern matching rules to replace small IR fragments with
equivalent instructions, but this struggles to effectively ex-
ploit accelerator instructions which correspond to large, com-
plex program fragments. Recent work applies more powerful
search techniques to target more complex SIMD instructions
using program synthesis [27] and equality saturation [33].
Exo allows substitution of much larger program fragments
with arbitrary equivalent procedures, under explicit pro-
grammer control, and allows these substitutions to be in-
terleaved with further scheduling transformations rather
than confined to the compiler backend. TVM provides a re-
lated łtensorizationž directive for replacing loop fragments
with instructions asserted as equivalent [8], but it lacks the
combination of automation and checking provided by Exo’s
unification procedure.

Program Analysis Our framework for verifying equiva-
lence and safety of Exo programs builds on several threads
from type systems and dependence analysis. Dependently-
typed arrays, especially as adapted in the formalization of
Halide, inform our treatment of memory safety [22, 23, 30,
38]. Dependence analysis, especially on static control pro-
grams, forms a common basis for reasoning about the safety
of loop transformations [12, 14]. When combined with rea-
soning about affine indexing, this is the basis of polyhedral
compilation [13]. In contrast, our approach builds on effect
types, as proposed by Gifford and Lucassen [17]. While these
approaches are distinct, the earliest foundations of depen-
dencies for program parallelization define conditions on read
and write sets closely related to our effect analyses [6].
Despite this difference, Exo can be seen as a polyhedral

compiler, in the sense that it is built on linear integer arith-
metic and static control programs. However, the program
analysis used in Exo goes beyond what is normally called
łpolyhedral analysisž in two respects: mutable control state
(for which we must rely on an approximating symbolic
dataflow analysis ğ5.3), and justifying code deletion/insertion
(ğ5.7, ğ6.2). Both of these phenomena are necessary to sup-
port scheduling of hardware accelerators that make use of
configuration state. They also forced us to adopt ternary logic
at the base of our program analysis in order to safely prop-
agate the dataflow approximations. If configuration state
were eliminated, Exo would more closely resemble tradi-
tional polyhedral compilers focused purely on reordering
statement instances.

9 Limitations & Future Work

Multi-Core Semantics Although the instruction replace-
ment directive (ğ3.4) enables users to access fine-grained
intra-instruction or SIMD parallelism, Exo does not currently
model multi-core parallelism. Naïvely, we could introduce
a parallel for-loop with OpenMP-like semantics. Our effect
analysis is powerful enough to conservatively check that
different loop iterations touch strictly disjoint regions of
memory. However, there is no single platform independent
approach to threadingÐwhich clashes with our design goal
of externalizing hardware backends. A more ambitious solu-
tion would find some way to externalize both the semantics
and primitives associated with different kinds of threading.
(e.g. pthreads, CUDA, MPI, etc.)

Alternatively, the .replace() directive applied to a no-
op instruction can serve an escape hatch to, for example,
inject OpenMP pragmas around a given loop. We tested this
on our conv implementation and observed that our new
implementation still matches Halide, while both pull ahead
of oneDNN by 25% (flops) on 8 or more threads.

Automatic Scheduling We have not yet written any au-
toschedulers [1, 9, 26, 42] for Exo, but plan to. We expect Exo
autoscheduling to differ from prior systems in two essential
ways. First, because hardware targets are externalized, id-
iosyncratic, and frequently proprietary, we do not expect any
one single autoscheduling strategy to work across all accel-
erators. Second, because Exo schedules are composable (as
successive rewrites) rather than monolithic, Exo autosched-
ulers can also be developed compositionally. This opens up
the possibility of developing libraries of re-usable mid-level
scheduling operators built from semi-automated combina-
tions of primitive scheduling operators. With time, whole
suites of optimization passes could be writtenÐentirely ex-
ternal to the Exo compiler.

Acknowledgments

We would like to thank the first Exo users, especially Grace
Dinh, Abhijit Davare, and Kevin Qian, for providing feed-
back. We would also like to thank the PLDI reviewers for
their suggestions. This work was partially supported by the
Applications Driving Architectures (ADA) center, one of six
centers of JUMP, a Semiconductor Research Corporation pro-
gram co-sponsored by DARPA. It was also funded in part
by the U.S. Government under the DARPA RTML program
(contract FA8650-20-2-7006) and NSF awards CCF-1723445
& CCF-1846502. The views and conclusions contained in
this document are those of the authors and should not be
interpreted as representing the official policies, either ex-
pressed or implied, of the U.S. Government. Yuka Ikarashi
was supported by a Funai Overseas Scholarship, Masason
Foundation fellowship, and Great Educators fellowship.

716

Exocompilation for Productive Programming of Hardware Accelerators PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

References
[1] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-

Mao Li, Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fata-

halian, Frédo Durand, and Jonathan Ragan-Kelley. 2019. Learning to

optimize Halide with tree search and random programs. ACM Trans.

Graph. 38, 4 (2019), 121:1ś121:12. https://doi.org/10.1145/3306346.

3322967

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006.

Compilers: Principles, Techniques, and Tools (2 ed.). Pearson Education.

[3] Riyadh Baghdadi, Ulysse Beaugnon, Albert Cohen, Tobias Grosser,

Michael Kruse, Chandan Reddy, Sven Verdoolaege, Adam Betts, Alas-

tair F. Donaldson, Jeroen Ketema, Javed Absar, Sven van Haastregt,

Alexey Kravets, Anton Lokhmotov, Robert David, and Elnar Hajiyev.

2015. PENCIL: A Platform-Neutral Compute Intermediate Language

for Accelerator Programming. In PACT. IEEE Computer Society, San

Francisco, CA, USA, 138ś149. https://doi.org/10.1109/PACT.2015.17

[4] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del

Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib

Kamil, and Saman P. Amarasinghe. 2019. Tiramisu: A Polyhedral

Compiler for Expressing Fast and Portable Code. In IEEE/ACM In-

ternational Symposium on Code Generation and Optimization, CGO

2019 (Washington, DC, USA). IEEE, Piscataway, NJ, USA, 193ś205.

https://doi.org/10.1109/CGO.2019.8661197

[5] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012.

Legion: expressing locality and independence with logical regions. In

SC Conference on High Performance Computing Networking, Storage

and Analysis, SC ’12 (Salt Lake City, UT, USA). IEEE, Piscataway, NJ,

USA, 66. https://doi.org/10.1109/SC.2012.71

[6] A. J. Bernstein. 1966. Analysis of Programs for Parallel Processing.

IEEE Transactions on Electronic Computers EC-15, 5 (1966), 757ś763.

https://doi.org/10.1109/PGEC.1966.264565

[7] Chun Chen, Jacqueline Chame, and Mary Hall. 2008. CHiLL: A frame-

work for composing high-level loop transformations. Technical Report.

University of Southern California.

[8] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie

Yan, Meghan Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis

Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An

Automated End-to-end Optimizing Compiler for Deep Learning. In

Proceedings of the 12th USENIX Conference on Operating Systems Design

and Implementation (Carlsbad, CA, USA) (OSDI’18). USENIX Associa-

tion, Berkeley, CA, USA, 579ś594. http://dl.acm.org/citation.cfm?id=

3291168.3291211

[9] Tianqi Chen, Lianmin Zheng, Eddie Q. Yan, Ziheng Jiang, Thierry

Moreau, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018.

Learning to Optimize Tensor Programs. In Advances in Neural Infor-

mation Processing Systems 31: Annual Conference on Neural Information

Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal,

Canada. 3393ś3404. http://papers.nips.cc/paper/7599-learning-to-

optimize-tensor-programs

[10] Sébastien Donadio, James C. Brodman, Thomas Roeder, Kamen Yotov,

Denis Barthou, Albert Cohen, María Jesús Garzarán, David A. Padua,

and Keshav Pingali. 2005. A Language for the Compact Representation

of Multiple Program Versions. In Languages and Compilers for Parallel

Computing, 18th International Workshop, LCPC 2005. Springer Berlin

Heidelberg, Berlin, Heidelberg, 136ś151. https://doi.org/10.1007/978-

3-540-69330-7_10

[11] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon

Leem, Mike Houston, Ji Young Park, Mattan Erez, Manman Ren,

Alex Aiken, William J. Dally, and Pat Hanrahan. 2006. Sequoia:

Programming the Memory Hierarchy. In Proceedings of the 2006

ACM/IEEE Conference on Supercomputing (Tampa, Florida) (SC ’06).

Association for Computing Machinery, New York, NY, USA, 83śes.

https://doi.org/10.1145/1188455.1188543

[12] Paul Feautrier. 1991. Dataflow analysis of array and scalar references.

Int. J. Parallel Program. 20, 1 (1991), 23ś53. https://doi.org/10.1007/

BF01407931

[13] Paul Feautrier and Christian Lengauer. 2011. The Polyhedron Model.

In Encyclopedia of Parallel Computing, David Padua (Ed.). Springer,

1581ś1592. https://doi.org/10.1007/978-0-387-09766-4_502

[14] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The

Program Dependence Graph and Its Use in Optimization. ACM Trans.

Program. Lang. Syst. 9, 3 (jul 1987), 319ś349. https://doi.org/10.1145/

24039.24041

[15] Franz Franchetti, Tze Meng Low, Doru-Thom Popovici,

Richard Michael Veras, Daniele G. Spampinato, Jeremy R. Johnson,

Markus Püschel, James C. Hoe, and José M. F. Moura. 2018. SPIRAL:

Extreme Performance Portability. Proc. IEEE 106, 11 (2018), 1935ś1968.

https://doi.org/10.1109/JPROC.2018.2873289

[16] Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer,

Pranav Prakash, Jerry Zhao, Daniel Grubb, Harrison Liew, Howard

Mao, Albert Ou, Colin Schmidt, Samuel Steffl, John Wright, Ion Sto-

ica, Jonathan Ragan-Kelley, Krste Asanovic, Borivoje Nikolic, and

Yakun Sophia Shao. 2021. Gemmini: Enabling Systematic Deep-

Learning Architecture Evaluation via Full-Stack Integration. In Pro-

ceedings of the 58th Annual Design Automation Conference (DAC). 769ś

774. https://doi.org/10.1109/DAC18074.2021.9586216

[17] David K. Gifford and John M. Lucassen. 1986. Integrating Functional

and Imperative Programming. In Proceedings of the 1986 ACM Confer-

ence on LISP and Functional Programming (Cambridge, Massachusetts,

USA) (LFP ’86). Association for Computing Machinery, New York, NY,

USA, 28ś38. https://doi.org/10.1145/319838.319848

[18] Bastian Hagedorn, Archibald Samuel Elliott, Henrik Barthels, Rastislav

Bodik, and Vinod Grover. 2020. Fireiron: A Scheduling Language for

High-Performance Linear Algebra on GPUs. arXiv:2003.06324 [cs.PL]

[19] Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch,

and Michel Steuwer. 2020. A Language for Describing Optimization

Strategies. arXiv:2002.02268 [cs.PL]

[20] Albert Hartono, Boyana Norris, and Ponnuswamy Sadayappan. 2009.

Annotation-based empirical performance tuning using Orio. In 23rd

IEEE International Symposium on Parallel and Distributed Processing,

IPDPS 2009, Rome, Italy, May 23-29, 2009 (Rome, Italy). IEEE, Piscataway,

NJ, USA, 1ś11. https://doi.org/10.1109/IPDPS.2009.5161004

[21] Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley,

and Frédo Durand. 2019. Taichi: a language for high-performance

computation on spatially sparse data structures. ACM Trans. Graph.

38, 6 (2019), 201:1ś201:16. https://doi.org/10.1145/3355089.3356506

[22] C. Barry Jay and Milan Sekanina. 1997. Shape Checking of Array

Programs. In Computing: the Australasian Theory Symposium. Sydney,

Australia.

[23] C. B. Jay and P. A. Steckler. 1998. The functional imperative: Shape!.

In Programming Languages and Systems, Chris Hankin (Ed.). Springer,

Berlin, Heidelberg, 139ś153. https://doi.org/10.1007/BFb0053568

[24] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and

Saman Amarasinghe. 2017. The tensor algebra compiler. Proceedings

of the ACM on Programming Languages 1, OOPSLA (oct 2017), 1ś29.

https://doi.org/10.1145/3133901

[25] Amanda Liu, Gilbert Louis Bernstein, Adam Chlipala, and Jonathan

Ragan-Kelley. 2022. Verified Tensor-Program Optimization Via High-

level Scheduling Rewrites. Proc. ACM Program. Lang. 6, POPL, Article

55 (jan 2022), 28 pages. https://doi.org/10.1145/3498717

[26] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-

Kelley, and Kayvon Fatahalian. 2016. Automatically scheduling halide

image processing pipelines. ACM Trans. Graph. 35, 4 (2016), 83:1ś83:11.

https://doi.org/10.1145/2897824.2925952

[27] Phitchaya Mangpo Phothilimthana, Archibald Samuel Elliott, An

Wang, Abhinav Jangda, Bastian Hagedorn, Henrik Barthels, Samuel J.

Kaufman, Vinod Grover, Emina Torlak, and Rastislav Bodik. 2019.

717

https://doi.org/10.1145/3306346.3322967
https://doi.org/10.1145/3306346.3322967
https://doi.org/10.1109/PACT.2015.17
https://doi.org/10.1109/CGO.2019.8661197
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1109/PGEC.1966.264565
http://dl.acm.org/citation.cfm?id=3291168.3291211
http://dl.acm.org/citation.cfm?id=3291168.3291211
http://papers.nips.cc/paper/7599-learning-to-optimize-tensor-programs
http://papers.nips.cc/paper/7599-learning-to-optimize-tensor-programs
https://doi.org/10.1007/978-3-540-69330-7_10
https://doi.org/10.1007/978-3-540-69330-7_10
https://doi.org/10.1145/1188455.1188543
https://doi.org/10.1007/BF01407931
https://doi.org/10.1007/BF01407931
https://doi.org/10.1007/978-0-387-09766-4_502
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/24039.24041
https://doi.org/10.1109/JPROC.2018.2873289
https://doi.org/10.1109/DAC18074.2021.9586216
https://doi.org/10.1145/319838.319848
https://arxiv.org/abs/2003.06324
https://arxiv.org/abs/2002.02268
https://doi.org/10.1109/IPDPS.2009.5161004
https://doi.org/10.1145/3355089.3356506
https://doi.org/10.1007/BFb0053568
https://doi.org/10.1145/3133901
https://doi.org/10.1145/3498717
https://doi.org/10.1145/2897824.2925952

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan Ragan-Kelley

Swizzle Inventor: Data Movement Synthesis for GPU Kernels. In Pro-

ceedings of the Twenty-Fourth International Conference on Architectural

Support for Programming Languages and Operating Systems (Provi-

dence, RI, USA) (ASPLOS ’19). Association for Computing Machinery,

New York, NY, USA, 65ś78. https://doi.org/10.1145/3297858.3304059

[28] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy,

Saman P. Amarasinghe, and Frédo Durand. 2012. Decoupling al-

gorithms from schedules for easy optimization of image process-

ing pipelines. ACM Trans. Graph. 31, 4 (2012), 32:1ś32:12. https:

//doi.org/10.1145/2185520.2185528

[29] Jonathan Ragan-Kelley, Andrew Adams, Dillon Sharlet, Connelly

Barnes, Sylvain Paris, Marc Levoy, Saman P. Amarasinghe, and Frédo

Durand. 2018. Halide: decoupling algorithms from schedules for high-

performance image processing. Commun. ACM 61, 1 (2018), 106ś115.

https://doi.org/10.1145/3150211

[30] Alex Reinking, Gilbert Bernstein, and Jonathan Ragan-Kelley. 2020.

Formal Semantics for the Halide Language. Master’s thesis. EECS

Department, University of California, Berkeley. http://www2.eecs.

berkeley.edu/Pubs/TechRpts/2020/EECS-2020-40.html

[31] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2017. LIFT:

A functional data-parallel IR for high-performance GPU code genera-

tion. In 2017 IEEE/ACM International Symposium on Code Generation

and Optimization (CGO). 74ś85. https://doi.org/10.1109/CGO.2017.

7863730

[32] Adilla Susungi, Norman A. Rink, Albert Cohen, Jeronimo Castrillon,

and Claude Tadonki. 2018. Meta-Programming for Cross-Domain Ten-

sor Optimizations. In Proceedings of the 17th ACM SIGPLAN Interna-

tional Conference on Generative Programming: Concepts and Experiences

(Boston,MA, USA) (GPCE 2018). Association for ComputingMachinery,

New York, NY, USA, 79ś92. https://doi.org/10.1145/3278122.3278131

[33] Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt,

and Adrian Sampson. 2021. Vectorization for Digital Signal Proces-

sors via Equality Saturation. In Proceedings of the 26th ACM Inter-

national Conference on Architectural Support for Programming Lan-

guages and Operating Systems (Virtual, USA) (ASPLOS 2021). Asso-

ciation for Computing Machinery, New York, NY, USA, 874ś886.

https://doi.org/10.1145/3445814.3446707

[34] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya

Goyal, Zachary DeVito, William S. Moses, Sven Verdoolaege, An-

drew Adams, and Albert Cohen. 2018. Tensor Comprehensions:

Framework-Agnostic High-Performance Machine Learning Abstrac-

tions. arXiv:1802.04730 [cs.PL]

[35] Anand Venkat, Tharindu Rusira, Raj Barik, Mary Hall, and Leonard

Truong. 2019. SWIRL: High-performance many-core CPU code

generation for deep neural networks. The International Journal of

High Performance Computing Applications 33, 6 (2019), 1275ś1289.

https://doi.org/10.1177/1094342019866247

[36] Sven Verdoolaege. 2010. isl: An Integer Set Library for the Polyhe-

dral Model. In Mathematical Software ś ICMS 2010, Komei Fukuda,

Joris van der Hoeven, Michael Joswig, and Nobuki Takayama (Eds.).

Springer, Berlin, Heidelberg, 299ś302. https://doi.org/10.1007/978-3-

642-15582-6_49

[37] Sven Verdoolaege, Serge Guelton, Tobias Grosser, and Albert Cohen.

2014. Schedule Trees. In Proceedings of the 4th International Workshop

on Polyhedral Compilation Techniques, Sanjay Rajopadhye and Sven

Verdoolaege (Eds.). INRIA, Vienna, Austria, 1ś9.

[38] Hongwei Xi and Frank Pfenning. 1999. Dependent Types in Practical

Programming. In Proceedings of the 26th ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages (San Antonio, Texas,

USA) (POPL ’99). Association for Computing Machinery, New York,

NY, USA, 214ś227. https://doi.org/10.1145/292540.292560

[39] Qing Yi, Keith Seymour, Haihang You, Richard W. Vuduc, and Daniel J.

Quinlan. 2007. POET: Parameterized Optimizations for Empirical

Tuning. In 21st International Parallel and Distributed Processing Sym-

posium (IPDPS 2007) (Rome, Italy). IEEE, Piscataway, NJ, USA, 1ś8.

https://doi.org/10.1109/IPDPS.2007.370637

[40] Tomofumi Yuki, Gautam Gupta, DaeGon Kim, Tanveer Pathan, and

Sanjay Rajopadhye. 2013. AlphaZ: A System for Design Space Explo-

ration in the Polyhedral Model. In Languages and Compilers for Parallel

Computing, Hironori Kasahara and Keiji Kimura (Eds.). Springer, Berlin,

Heidelberg, 17ś31. https://doi.org/10.1007/978-3-642-37658-0_2

[41] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil,

Julian Shun, and Saman P. Amarasinghe. 2018. GraphIt: a high-

performance graph DSL. PACMPL 2, OOPSLA (2018), 121:1ś121:30.

https://doi.org/10.1145/3276491

[42] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu,

Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen,

et al. 2020. Ansor: Generating High-Performance Tensor Programs

for Deep Learning. In Proceedings of the 14th USENIX Symposium on

Operating Systems Design and Implementation (OSDI’20). Article 49,

17 pages. https://doi.org/10.5555/3488766.3488815

718

https://doi.org/10.1145/3297858.3304059
https://doi.org/10.1145/2185520.2185528
https://doi.org/10.1145/2185520.2185528
https://doi.org/10.1145/3150211
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-40.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-40.html
https://doi.org/10.1109/CGO.2017.7863730
https://doi.org/10.1109/CGO.2017.7863730
https://doi.org/10.1145/3278122.3278131
https://doi.org/10.1145/3445814.3446707
https://arxiv.org/abs/1802.04730
https://doi.org/10.1177/1094342019866247
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1145/292540.292560
https://doi.org/10.1109/IPDPS.2007.370637
https://doi.org/10.1007/978-3-642-37658-0_2
https://doi.org/10.1145/3276491
https://doi.org/10.5555/3488766.3488815

	Abstract
	1 Introduction
	2 Example
	2.1 Exo Procedures, Compilation, and Scheduling
	2.2 Memories
	2.3 Instructions
	2.4 Configuration State

	3 The Exo Language and System
	3.1 The Exo Language
	3.2 Hardware Targets as Libraries
	3.3 Scheduling via Rewrites
	3.4 Code Replacement & Instruction Selection

	4 Formal Core Language
	4.1 Mathematical Model of Exo Programs
	4.2 Syntax, Semantics, and Well-Typed Programs
	4.3 Program Equivalence

	5 Effect Analysis & Transformation of Programs
	5.1 Ternary Logic
	5.2 Effect Expressions
	5.3 Global Dataflow
	5.4 Location Sets
	5.5 Effects
	5.6 Effects as Abstraction
	5.7 Basic Program Rewrites
	5.8 Loop Rewrites

	6 Contextual Analyses
	6.1 Contexts & Derived Quantities
	6.2 Context Extension

	7 Case Studies
	7.1 Gemmini
	7.2 x86
	7.3 Code Size

	8 Related Work
	9 Limitations & Future Work
	References

