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Human breast milk (hBM) is a dynamic fluid that contains millions of cells, but their
identities and phenotypic properties are poorly understood. We generated and analyzed
single-cell RNA-sequencing (scRNA-seq) data to characterize the transcriptomes of cells
from hBM across lactational time from 3 to 632 d postpartum in 15 donors. We found
that the majority of cells in hBM are lactocytes, a specialized epithelial subset, and that
cell-type frequencies shift over the course of lactation, yielding greater epithelial diver-
sity at later points. Analysis of lactocytes reveals a continuum of cell states characterized
by transcriptional changes in hormone-, growth factor-, and milk production-related
pathways. Generalized additive models suggest that one subcluster, LC1 epithelial cells,
increases as a function of time postpartum, daycare attendance, and the use of hor-
monal birth control. We identify several subclusters of macrophages in hBM that are
enriched for tolerogenic functions, possibly playing a role in protecting the mammary
gland during lactation. Our description of the cellular components of breast milk, their
association with maternal–infant dyad metadata, and our quantification of alterations
at the gene and pathway levels provide a detailed longitudinal picture of hBM cells
across lactational time. This work paves the way for future investigations of how a
potential division of cellular labor and differential hormone regulation might be lever-
aged therapeutically to support healthy lactation and potentially aid in milk
production.

single-cell RNA-sequencing j breast milk j mammary epithelial cell j macrophage j maternal health

Human breast milk (hBM) is the nutritional food source evolved specifically to meet the
needs of infants (1). Feeding exclusively with hBM is currently recommended for the first
6 mo of life, and this is one of the strongest preventative measures against mortality in chil-
dren under 5 y old (2). In addition, breastfeeding has been linked to long-term health
benefits for both infants and nursing mothers (1, 3, 4). Breastfed infants have decreased
infections, improved gut and intestinal development, and improved regulation of weight
long after termination of breastfeeding (5–7). Additionally, nursing mothers have a
decreased risk of ovarian and breast cancers (8–10). Given that lactation and nursing pro-
vide substantial health benefits to mothers and infants, there is a need to better understand
the molecular and cellular features of hBM, and broadly, how these may correlate with
maternal and infant lifestyles and health. This understanding could lead to: insights into
the functions of cells involved in lactation and how they may relate to decreased maternal
milk production; actionable findings to inform physician advicse on the impact of lifestyle
on breast milk composition; and, improved formulas and supplements to support changing
infant health needs over the course of their first year of life.
The stages of lactation are canonically described as colostrum (0 to 3 d postpartum),

transitional (6 to 14 d postpartum), and mature (>15 d postpartum) followed by invo-
lution, which begins within hours of the cessation of lactation (11, 12). During
pregnancy, lactation, and involution, the human mammary gland undergoes drastic
remodeling that requires coordinated shifts in tissue architecture and cellular composi-
tion guided by hormonal cues (13, 14). During lactation, the cells of the mammary
gland are responsible for synthesizing and transporting the diverse components of
hBM, as well as responding to maternal and infant signals to maintain lactational via-
bility. A working knowledge of the cellular composition, activities, and regulation of
the human mammary gland in the period between the establishment of lactation and
involution is essential for understanding environmental factors that impact milk pro-
duction, the responsiveness of the breast to the changing nutritional needs of the
infant, and the mechanisms of long-term lactation. However, given the unique nature
of this tissue niche, it is challenging to study lactating tissue directly in humans.
hBM contains live cells, which are thought to enter the breast through exfoliation

during the process of breastfeeding, thereby providing an opportunity to study
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lactational cells (12). Cells from hBM are viable and can be cul-
tured, and hBM immune cells were shown to transfer to off-
spring bloodstream and tissues in animal models (12, 15–17).
The investigation of these live cells provides both noninvasive
surveillance of the cells in the mammary mucosa and allows for
a more detailed understanding of their roles in infant develop-
ment (12, 17, 18). The cellular fraction of hBM contains both
immune and somatic cells (11). Immune cell populations, such
as macrophages, may be involved in the protection of the breast
itself from infection during lactation (11, 18, 19). They may
also produce important bioactive components, such as antibod-
ies and cytokines, which play a role in the establishment of the
infant immune system (20, 21). Somatic cells identified in
breast milk include epithelial cells and a small fraction of stem
cells (11). The dominant epithelial cell type in breast milk is
secretory epithelial cells (lactocytes), which are involved in the
synthesis of an array of factors, such as human milk oligosac-
charides, lactose, micronutrients, fat, hormones, and cytokines,
as well as their transport into the lumen of the lactating breast
(11). Much remains to be learned about how the behaviors of
lactocytes are regulated and the mechanisms by which they cre-
ate these essential components and transport them into breast
milk (11, 13, 22). Despite a dual role in conferring immuno-
logical protection and producing dynamic nutrition for infants,
it is still unclear how the cellular composition of milk may
change over the course of lactation (3, 4).
To date, several studies have used either bulk (12, 23–26) or

single-cell RNA-sequencing (scRNA-seq) to study the transcrip-
tome of hBM in small cohorts (15, 27). These studies have
revealed subsets of epithelial cells in hBM, including progenitor
luminal cells, and genes that change in bulk over the course of
lactation. Bulk analysis, however, limits our ability to delineate
key cell states and uncover specialized cell phenotypes (28, 29).
Previous scRNA-seq analyses, meanwhile, havebeen limited by
low sample numbers, small donor pools, and few time points,
thereby decreasing the ability to characterize the cross-donor
heterogeneity of breast milk longitudinally (15, 26, 30). Longi-
tudinal studies of other milk factors have revealed dynamic
shifts in hormone concentrations, cytokine levels, and overall
protein content up to 3 mo postpartum, and suggest that most
components decrease in concentration early in lactation
(31–36). However, no transcriptomic studies to date have cap-
tured the full range of lactation across time.
In order to better understand cellular dynamics and longitu-

dinal lactational heterogeneity, we sought to characterize the
transcriptomics of hBM-derived cells using scRNA-seq on lon-
gitudinal samples. hBM from 15 human donors was profiled
longitudinally across various stages of lactation (Fig. 1A and
SI Appendix, Table S1). For each sample, we also collected a
rich set of information about the mother–infant dyad, includ-
ing vaccine history, illness, and daycare status. Our results pro-
vide a valuable single-cell characterization of hBM-resident
cells over the course of lactation, with a dataset comprised of
over 48,478 cells from 50 samples (Dataset S1). Computa-
tional analysis of this data identified key cell subsets, including
immune cells and epithelial cells at each lactation stage.
Through additional analyses, we find that health and lifestyle
changes, including the use of hormonal birth control and the
start of daycare, may be associated with alterations in cell fre-
quencies over lactation. We also nominate pathways and genes
that are altered in epithelial subsets over the course of lactation,
including those that may be hormonally regulated. Taken
together, our data and analyses provide a longitudinal charac-
terization of single cells in breast milk and shed light on the

gene programs that may drive crucial human lactocyte func-
tions over the course of lactation.

Results

We Identify Major Cell Types of the Breast Epithelium and
Immune Cells in hBM over the Course of Lactation. We first
optimized a process for generating scRNA-seq data from cells
in hBM. Previous studies characterized how sample handling,
as well as methods used for cell isolation, can significantly
impact the transcriptomes of isolated cells (37, 38). We com-
pared several workflows for upstream handing of collected
hBM—including fresh isolation of cells, holding at 4 °C over-
night until cell isolation, and a single freeze/thaw of whole milk
before isolating cells—as well as several methods for isolating
cells, including sorting live cells, live cell enrichment with a
bead-based kit, or centrifugal isolation of fresh cells as previ-
ously described (SI Appendix, Fig. S1) (39). We found that for
each method, except for freezing, quality-control metrics were
comparable, and we identified expected cell types in milk,
including epithelial and immune cell subsets (SI Appendix, Fig.
S1 B and C). Fresh processed cells, sorted cells, or live-enriched
cells clustered together in principal component (PC) space, sug-
gesting little gain by additional processing prior to performing
scRNA-seq. Additionally, we found that in one donor, fresh
but not frozen processing allowed us to retain macrophages (SI
Appendix, Fig. S1D). In agreement with previous studies, we
found that isolation of cells from fresh milk resulted in the
highest-quality data and we therefore used this method for our
samples analysis (40).

To better understand the transcriptomes of single cells in
hBM over the course of lactation, we recruited donors to pro-
vide milk samples at several time points postpartum, including
colostrum/early (3 to 6 d), transitional (10 to 14 d), mature
(15 to 18 d), and several late points postpartum (5 to 90 wk)
(Fig. 1A). We performed Seq-Well S3 with freshly isolated cells
from whole milk to generate high-quality single-cell transcrip-
tomic data across all lactation stages (SI Appendix, Fig. S2A).

We performed unsupervised clustering across all high-quality
cells and labeled cell types using marker genes (Fig. 1 B and C
and Dataset S2) previously identified in the context of the
mammary gland and the immune system (41–43). Our analyses
revealed 10 broad cell types representing both epithelial and
immune cell compartments (Fig. 1B and SI Appendix, Fig.
S2B). We identified seven top-level immune cell clusters,
including B cells (TCF4, SEL1L3, CCDC50), dendritic cells
(NR4A3, REL), T cells (ETS1), two macrophage clusters
(GPNMB+ macrophages [CD68, GPNMB, CTSL], and
CSN1S1+ macrophages [CD68, CSN1S1, XDH]), neutrophils
(IL8, CSF3R), and eosinophils (SORL1, CORO1A). We also
identified three nonimmune top-level clusters, including lumi-
nal cluster 2 (LC2) (XDH, CSN1S1, CSN3), luminal cluster 1
(LC1) (CLDN4, JUN, KLF6), and fibroblasts (SERPINH1,
PTN). Interestingly, we found that these cells clustered pre-
dominantly by cell type, rather than donor, suggesting that
donor-to-donor differences were not the primary axis of varia-
tion. These subsets agree with other datasets describing scRNA-
seq on hBM in smaller cohorts on the basis of component cell
clusters and genes expressed in these clusters with some excep-
tions (SI Appendix, Fig. S3 A–E) (15, 27, 30). Due to increased
cell numbers in this dataset, we identified more immune clus-
ters (seven) than previous studies, which identified two or three
clusters, adding dendritic cells, a second macrophage cluster,
and eosinophils to these previously identified. We named our
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two large epithelial clusters as LC in accordance with previous
studies since both express high levels of milk synthesis genes
(i.e., LALBA and CSNs); however, LC2 expresses these genes at
higher levels, and LC1 expresses higher levels of distinct genes
(Fig. 1C and SI Appendix, Fig. S3 C and D) (30). Unlike previ-
ous studies, we identified a small cluster of fibroblast-like cells
in hBM expressing genes, consistent with fibroblasts found in
breast tissue datasets (COL1A1, DCN, FN1) (SI Appendix, Fig.
S3 A and F). This small cluster contains cells from only two
donors at very late milk stages, so further study is required to
understand if these cells are found in hBM at various lactational
stages (Fig. 2A). Overall, lactocyte epithelial cells (LC1 and
LC2) were the most abundant cell type across both donor and
lactation stage (mean 81.7% of all cells per sample, SD 24%),
with macrophages comprising the most abundant immune cell
type (50.5% of immune cells per sample, SD 34%) (Fig. 2A).

Cell Frequencies Are Dynamic over the Course of Lactation
and Associate with Maternal–Infant Metadata. In order to
better understand longitudinal variation in hBM-derived cells
and our cohort metadata, we plotted total cell counts, cell-type
frequencies, and metadata for each sample in our cohort (Fig.
2A). We found that the total cell counts per milliliter of milk
decreased over the course of lactation, agreeing with previous
literature showing a decrease in total cell counts in mature milk
(SI Appendix, Fig. S4) (23). We also found that the majority of
our cohort were directly breastfeeding, with five donors (nine
samples) additionally supplementing with formula and six
donors (nine samples) reporting supplementation with solid
foods. Several donors reported breast soreness periodically over
the course of the study, with only one donor reporting mastitis
at sample collection (Dataset S1). Additionally, none of our
donors reported menstruating at the time of sample donation
and four were on hormonal birth controls or other reported
medications. Finally, we had three donors who had begun
weaning and six whose children had started daycare during our

study. Globally, the variability in reported metadata allowed us
to interrogate how cellular composition may be impacted by
shifts in time, lifestyle, and maternal or infant health status.
We noted that a substantial amount of variability in these cell
compositions may be attributed to individual donors, with a
single donor consistently showing substantially larger macro-
phage proportions (BM05) and all of the fibroblast cells com-
ing from two donors (BM16, BM17) (Fig. 2A).

We tested the association between the abundance of identi-
fied cell types with any reported metadata using generalized
additive models (SI Appendix, Table S2). While we found that
nothing was significantly associated following correction for
multiple hypotheses, we did find some associations indicating
potential heterogeneity. We found GPNMB+ macrophage pro-
portion associated with formula supplementation, LC1 propor-
tion positively associated with daycare attendance and with use
of hormonal birth control, and dendritic cell proportion nega-
tively associated with use of hormonal birth control and with
infant vaccinations (Fig. 2A and SI Appendix, Table S2). Since
it is unclear if we would expect the proportions of epithelial
and immune cells to respond to each of these covariates in
coordinated ways, we also tested for associations between donor
metadata and immune subsets as a proportion of only immune
cells (SI Appendix, Table S2). While these associations still did
not meet our multiple testing correction threshold, we found
that eosinophil proportion was negatively associated with for-
mula use, dendritic cell proportion, positively associated with
infant illness, and that GPNMB+ macrophage proportion was
negatively associated with infant or maternal vaccination
reports. We acknowledge that given our study design, often
donor is conflated with certain metadata features as well as
time, but include these tentative associations to motivate fur-
ther studies in larger cohorts designed prospectively.

We next sought to refine our understanding of which cell
types were correlated with time postpartum by looking at
associations of cellular proportions with time postpartum.
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We found that several cell types remained relatively consis-
tent over the sampled course of lactation, including LC2 and
macrophages (Fig. 2B). We also found several cell types that
were significantly positively associated with time postpar-
tum, including LC1 (P = 1.9e-4) and T cells (P = 2.3e-3)
(Fig. 2B). As with our metadata, we tested for associations
between time postpartum and immune cells represented as a
proportion of only immune cells and of epithelial cells as a
proportion of just epithelial cells (SI Appendix, Fig. S5 A–D
and Table S2). With this representation, LC1 proportion
was still significantly associated (P = 3.5e-3) but T cells were
not. Alterations in the composition of the epithelial com-
partment may suggest some emergent cellular functions that
support later lactation, and the presence of more T cells,
while still very low fractions of total immune cells, could
reflect increasing infant or maternal illnesses reported at later
time points in our cohort.

Macrophages in hBM Have Unique Transcriptional and
Functional Programs. We found that the majority of immune
cells in hBM over the course of lactation were macrophages,
agreeing with previous literature (44). We next sought to
better understand the potential functions and phenotypes of
macrophages in hBM given that their percentages were
altered in response to formula supplementation. We per-
formed subclustering analyses and functional enrichment of
marker genes that were identified for each subcluster (Fig. 3
A and B, SI Appendix, Fig. S6, and Datasets S3–S5). We

found five subclusters of macrophages that spanned lactation
stage, with macrophage subcluster 0 predominantly identi-
fied at early milk stages and macrophage subcluster 3 pre-
dominantly arising from donor BM16 (SI Appendix, Fig.
S5E). Macrophage subclusters were defined by distinct gene
signatures and pathway enrichment results (Fig. 3 B and C).
Macrophage subclusters 0, 1, and 4 were defined by path-
ways related to interactions with T cells, neutrophils, and
immune tolerance, including interleukin (IL)-10 and PD-1
related pathways. These enrichments were driven by unique
sets of genes present in each subcluster (Dataset S4). Interest-
ingly, macrophage subcluster 0 was defined by several marker
genes characteristic of lipid-associated macrophages (LIPA,
TREM2) and those involved in iron regulation (FTL) (45).
Macrophage subcluster 3 was enriched for several translation-
related pathways, and defined by lipid-related genes like SCD
and LTA4H, and stress-response genes like NUPR1. We caution
that this subcluster was predominantly comprised of one donor,
BM16, and thus may reflect specific variations in myeloid cell
state related to that particular donor. Finally, macrophage sub-
cluster 2, which was comprised almost entirely of CSN1S1+

macrophages, was defined by structural pathways, transport, and
keratinization. This may suggest that these macrophages are
important for structural maintenance or have altered their tran-
scriptional state in response to their local tissue milieu, possibly
via phagocytosis (46). Future work should explore these mecha-
nisms since hBM components have been shown to promote tol-
erogenic phenotypes in myeloid cells (47, 48).
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In order to determine if macrophages in each cluster were more
inflammatory (M1) or antiinflammatory (M2) in nature, we
scored these clusters for M1 or M2 gene signatures (45, 49).
While it is widely recognized that macrophages adopt a diverse
array of phenotypes in the context of tissues, conventional M1 or
M2 status is a useful indicator and comparison point to existing
literature in the context of the lactating mammary gland (18, 42).
To accomplish this, we generated module scores for M1 or M2
gene sets within each macrophage subcluster. Overall, each sub-
cluster, except for subcluster 1, scored higher for M2-gene sets,
suggesting that the majority of macrophages in hBM are M2-like
(Fig. 3D). Combined with our enrichment results, and previous
literature reports in the context of the mammary gland, this sug-
gests that macrophages in hBM predominantly serve immunosup-
pressive and tissue maintenance functions (18, 50).
Finally, we determined if sample distribution across clusters

varied with four metadata variables of interest, including infant
medical events, weaning status, daycare status, and supplemen-
tation with formula (SI Appendix, Fig. S7). We found that sub-
cluster 0 had the highest proportion of reported infant medical
events, which included both vaccines and illness. Second, we
found that weaning-derived macrophages were predominantly
found in subclusters 4, 0, and 2 (SI Appendix, Fig. S7). Future
work should address the functional changes in macrophages in
hBM postweaning, since it is known that macrophages shift
their transcriptional and functional phenotypes dramatically in
response to alterations in the mammary gland (18, 50).

Epithelial Cell Subclusters in hBM Are Enriched for Distinct
Functions and Diversify over the Course of Lactation. In order
to better understand the full heterogeneity of epithelial cells in
hBM over the course of lactation, we performed subclustering
analysis on the epithelial cells (Materials and Methods and SI
Appendix, Supplementary Methods). We identified six subclusters of
epithelial cells (Fig. 4A, SI Appendix, Figs. S8 and S9, and Dataset
S6). The breast epithelium is composed of epithelial cells derived
from several lineages, including basal/myoepithelial cells and lumi-
nal cells. Consistent with other scRNA-seq studies of hBM, we
did not identify cells expressing basal/myoepithelial lineage
markers identified by scRNA-Seq of nonlactating human breast
tissue (Fig. 4B and SI Appendix, Figs. S3 B, C, and F and S8F)
(15, 27). We found that all epithelial subclusters expressed genes
related to milk synthesis—such as LALBA, CSN2, XDH, and
FASN, as well as canonical luminal cell markers (EPCAM,
KRT18, KRT19)—suggesting a clear luminal lineage and role in
milk production (Fig. 4B, SI Appendix, Fig. S3 B, C, and F, and
Dataset S6) (12, 27). Previous studies on the nonlactating breast
have distinguished several luminal cell signatures, including lumi-
nal progenitors (LP), secretory luminal, and hormone responsive
(HR+) luminal cells. Consistent with previous scRNA-seq studies
of hBM, we did not identify a discrete stem cell or HR+ cluster,
but found that both major epithelial cell clusters, LC1 and LC2,
expressed some progenitor markers (SOX9, ITGA6) and hormone
receptor markers (PRLR, INSR, and ESR1) in subsets of their cells
(Fig. 4B and SI Appendix, Figs. S2 and S3 B, C, and F).
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In order to better understand the functions of each subclus-
ter, we identified marker genes (Fig. 4C) and performed enrich-
ment analyses (Fig. 4D). The largest subcluster of epithelial
cells, secretory lactocytes, expressed the highest levels of secre-
tory markers (CHRDL2, CIDEA, ATP2C2), and lipid and lac-
tose synthesis genes (FBP1, ACACB) (Fig. 4C). This cluster was
also enriched for pathways associated with metabolic processes,
transport, and biosynthesis (Fig. 4D). While there is significant
heterogeneity within this large group of cells, gene expression
variability changed continuously with time and not according
to discrete subcluster groups (Materials and Methods, Fig. 4A,
and SI Appendix, Fig. S8A). The second largest subcluster, LC1
cells, was defined by expression of AP-1 transcription factor
subunits (JUN, ATF3, FOS), as well as MALAT1, KLF6, and
CLDN4, genes involved in tight junction pathways (51). This
subcluster was enriched for pathways related to microtubule
and cellular organization (microtubule anchoring, actin poly-
merization or depolymerization), cell–cell junction assembly,
protein transport via the Golgi, and ERBB2 signaling pointing
to an involvement in the establishment and maintenance of the
cell–cell tight junctions, which structurally support the alveolar
structures in the lactating breast (Fig. 4D) (52).
The cycling epithelial subcluster was defined by the expres-

sion of cell-cycle genes (STMN1, TOP2A) and was enriched for
cell-cycle–related processes, as well as several metabolic pro-
cesses. This subcluster is also composed entirely of cells whose
cell-cycle score indicated they were in the G2M and S phases
(SI Appendix, Fig. S8D). The MT-high LC2 cluster was defined
by similar gene expression to the secretory epithelial cells but
with higher mitochondrial gene proportion than other subclus-
ters of the LC2 cluster (SI Appendix, Fig. S8I). While mito-
chondrial RNA percentage is often used as a metric for dead or
dying cells in scRNA-seq analysis, we maintained this cluster in
the dataset because it met our very conservative threshold for
mitochondrial RNA percentage, showed an interesting trend of
increasing proportion over time, and may relate to altered met-
abolic activity in these cells (53).
The KRT high lactocyte 1 cluster was defined by expression

of cytoskeleton and structural genes (S100A9, KRT15, KRT8,
VIM) as well as immune response genes (ANXA1, DEB1,
IFITM3, CD74, HLA-B). This subcluster is enriched in path-
ways broadly related to translation, positive regulation of
defense response, and several signaling pathways (Fig. 4D). The
KRT high lactocyte 2 subcluster was enriched for similar path-
ways to the KRT high lactocyte 1 group, but this subcluster
shared fewer high-scoring pathways with the LC1 subcluster,
suggesting more of a supporting role in milk production and
less of a structural role.
Finally, we determined how these subclusters were changing

in proportion as a function of lactation stage (Fig. 4E and SI
Appendix, Fig. S5 A and C). Globally, we found that the cellu-
lar composition of later lactational timepoints was more diverse,
with higher Shannon entropy values per sample, as compared
to earlier time points, where early time points are dominated
by secretory epithelial cells (SI Appendix, Fig. S8K). All subclus-
ters, except the secretory and the cycling lactocytes, increased
over the course of lactation. This may indicate that some degree
of cellular specification is acquired over the course of lactation,
potentially to meet changing demands on the maternal–infant
dyad. For example, the increase in mitochondrial activity in the
MT high LC2 subcluster, coupled with alterations in several
metabolic pathways, may suggest that there are altered meta-
bolic programs that support the high lactational demand and
tissue turnover in later lactation.

There Were Significant Changes in Gene Expression over the
Course of Lactation in the LC1 Epithelial and Secretory
Lactocyte Subclusters. We found that both the fractional
abundance of epilthelial cells and their overall diversity
increased with time postpartum in hBM, so we next asked
which genes and pathways also changed over the course of lac-
tation in epithelial cells. To accomplish this, we performed dif-
ferential expression with pseudobulk populations across time
postpartum within each epithelial subcluster and annotated
genes and pathways, which changed across all epithelial sub-
clusters as well as those that changed in a single subcluster and
several that changed in opposite directions in different subclus-
ters (Materials and Methods and Datasets S7, S8, and S9). We
found that there were many genes that were differentially
expressed over time across all epithelial cells, including several
that decreased over time— such as APP, KRT15, and
FTH1—and several that increased, such as LYZ and TCN1
(Fig. 5A). Lysozyme, encoded by the transcript LYZ, one of the
most abundant bioactive components of milk, has previously
been shown to increase in later stages of lactation (54). Broadly,
genes in pathways related to metabolism and milk component
biosynthesis decreased in expression over the course of lactation
while genes in structural pathways and those involved in signal-
ing and response to stimulus increased in expression over the
course of lactation (Fig. 5B).

The LC1 and secretory lactocyte subclusters had the largest
numbers of genes differentially expressed over lactation time
unique to the subclusters (Dataset S7). Enrichment analyses of
these differentially expressed genes (Materials and Methods)
identified both shared and distinct pathways that changed with
time in both cell subclusters (Fig. 5B and SI Appendix, Fig.
S10). In secretory lactocytes, genes with decreasing expression
over time were enriched for pathways related to milk compo-
nent metabolism and milk component biosynthesis, translation,
and cellular respiration, while the genes that increased in
expression over time were enriched for pathways involved in
milk component transport, as well as transcription (SI
Appendix, Fig. S10A). The cholesterol biosynthesis pathway was
enriched in time-varying genes from both cell subclusters, but
its expression score increased over time in secretory lactocytes
and decreased over the course of lactation in the LC1 subcluster
(SI Appendix, Fig. S10B). Additionally, over the course of lacta-
tion, pathway scores for TGF-β signaling, chromatin remodel-
ing factors, cytoskeletal transport, vesicle-mediated transport,
and apoptosis all increased in LC1 cells with time postpartum
(SI Appendix, Fig. S10B). Taking these data together, we identi-
fied many pathways that are differentially altered with lactation
time in the major subclusters of epithelial cells.

In order to nominate key genes and factors that might be
responsible for pathway-level changes in these two subclusters,
we looked at the expression of key regulators that were differen-
tially expressed with time postpartum, including those impor-
tant for hormone signaling, growth factor signaling, AP-1
signaling, factors involved in STAT5 signaling, and several
milk production component genes (Fig. 5C) (55–57). We
found that the expression of several hormone receptor genes
changed in opposite directions with time in the LC1 and secre-
tory lactocyte subclusters, with estrogen receptor (ESR1) and
prolactin receptor (PRLR) increased in secretory lactocytes and
decreased in LC1 cells. Insulin receptor (INSR) increased in
just LC1 cells. These opposite changes in the PRLR receptor
are accompanied by corresponding changes in prolactin-
regulated STAT5, a core lactational gene involved in prolifera-
tion, cell survival, and milk component synthesis, and related
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pathways over the course of lactation (55, 58–63). In LC1 cells,
we observed decreases in STAT5A/B expression and down-
stream targets, such as AKT1, ACACA (a gene involved in fatty
acid synthesis), and CSN2 (the gene encoding β-casein) over
the course of lactation (Fig. 5C) (57). We also found a decrease
in the gene ontology (GO) terms cellular macromolecule bio-
synthetic process and cholesterol biosynthetic process in LC1
cells over the course of lactation, all of which are related to
milk component synthesis and could be prolactin-regulated via
STAT5 (SI Appendix, Fig. S10B) (58, 61, 63, 64). Expression
of PRLR changed in the opposite direction in secretory epithe-
lial cells, increasing with time postpartum along with some
increase in JAK2, STAT5A, and target ACACA expression (Fig.
5C). Given that these receptors are crucial to orchestrating the
functions and tissue structure of the lactating mammary gland,
our data suggest that these two subclusters may differentially
contribute to these functions over time in a hormonally regu-
lated manner.

Discussion

In this study, we used scRNA-seq to provide an in-depth char-
acterization of transcriptional changes over the course of lacta-
tion in hBM at single-cell resolution. Our cohort represented a
range of experiences of maternal–infant dyads allowing us to
determine how cellular content varied over the course of lacta-
tion, examine which maternal and infant factors (metadata

features) correlated with hBM cellular content, how cells
changed their transcriptomes longitudinally, and what the full
depth of cellular diversity was over each lactation stage. To our
knowledge, our study is unique in correlating maternal–infant
dyad metadata with cell proportions over the full course of lac-
tation. The relatively small size of our donor cohort compared
to the number of metadata variables considered limits the
strength of these associations. We expect that further study on
additional cohorts combined with these observations will lead
to important advances in the understanding of the impact of
the behavior and health of the maternal–infant dyad on breast
milk cellular composition.

We found that the majority of immune cells in our data
were macrophages and that adaptive immune cells, including T
cells and B cells, were only a small fraction of the total recov-
ered cells from hBM. Our data suggest that milk is dynamic
over the full course of lactation, with different immune cells
expanding and contracting within each sample over time. Previ-
ous reports have defined infiltration of CD45+ cells in response
to mastitis and other infections, and have characterized exten-
sively the features of immune cells by canonical makers in the
context of preterm birth or infection (3, 17, 23, 44, 65). These
studies predominantly relied on flow cytometry, and here, we
were able to use scRNA-seq to characterize alterations in cellu-
lar composition in depth with less potential bias. Our limited
sample processing (e.g., no staining or sorting) may have
enabled us to recover more macrophages than previous studies.
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Our top-level clustering revealed two major populations of
macrophages, both enriched for canonical macrophage markers
like CD68. We found that our CSN1S1+ macrophage cluster
was enriched for several milk production transcripts, like CSN.
These could be present in this population as “passenger” tran-
scripts that originate from engulfed apoptotic bodies, or these
may be functionally important given that previously defined
ductal associated macrophages expressed similar milk-related
transcripts (18, 66). We also identified several subclusters of
macrophages, and our GO enrichment and module scoring
analyses suggest that these may be more tolerogenic in nature.
Previous reports in mice have observed extensive diversity in
mammary duct macrophages, and have found that these cells
alter their transcriptomes significantly over reproductive cycles
(18). This, coupled with work in the context of breast cancer
and pan tissue analyses, suggests that the full functional diver-
sity of macrophages in the human breast has yet to be fully
characterized (67). Future work should seek to better under-
stand the factors, whether tissue- or milk-specific, that promote
tolerogenic functions of macrophages during lactation, and
what secreted factors from macrophages might support healthy
mammary gland functions. The putative association of our
macrophage GPNMB+ cluster with formula supplementation
motivates questions about how formula supplementation might
alter cellular composition in hBM, and whether this could
impact the functions of hBM-derived macrophages.
We identified two major populations of epithelial cells (LC1

and LC2) as well as several subclusters of LC2 cells (cycling lac-
tocytes, KRT enriched 1, KRT enriched 2, secretory, MT high
LC2). While the major populations agree with previous reports,
our data demonstrate the functional diversity of these cells and
differences compared to their breast tissue counterparts (15).

Our data suggest that LC1 cells may provide more structural
support during later lactation stages, while LC2 cells and its
associated subclusters may produce more milk components.
Consistent with previous work, we also did not see cells
expressing genes expected from myoepithelial, basal, or stem
cells (15, 27).

In addition to being associated with time postpartum, the
proportional abundance of LC1 cells were positively associated
with two external factors: daycare attendance and hormonal
birth control usage. The effect of these variables is challenging
to disentangle in our dataset due to their correlation with time
postpartum, but our results suggest that future work should
seek to understand how external perturbations and behaviors,
potentially including increased pumping frequency and circu-
lating hormone levels, impact the mammary gland specifically
during later stages of lactation. Our differential expression
results identifying key growth factors and hormone recep-
tors, like ESR1 and INSR, that changed in expression over
time in these cells suggest that these may be hormonally reg-
ulated and emerge as important structural cells in later stages
of lactation.

At the gene level, bulk transcriptomic studies have shown
transcriptional changes between colostrum, transitional, and
mature milk in pathways presumed to originate from epithelial
cells, indicating that insulin signaling, lactose synthesis, and
fatty acid synthesis pathways increase during these early stages
of lactation. Only a few transcriptional studies have character-
ized the gene-expression changes during later stages of lactation
before involution, suggesting higher expression levels of PRLR,
STAT5A, and milk protein and lipid synthesis genes during lac-
tation; however, bulk studies have not had the resolution to
describe changes in which cells expressi these genes (12, 25).
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We identify the epithelial cell subclusters in which key genes
are changing across both time and many donors, allowing us to
gain insights into potential alterations in milk transport, syn-
thesis, and production. Previous studies suggested that more
milk components are transferred from the blood to the milk via
tight junctions at later time points in lactation and fewer com-
ponents are synthesized in the lactocytes themselves (68). Our
results suggest that this functional change may come from
changes in the proportions of cells executing these functions
over the course of lactation. The LC1 cell cluster, whose
marker genes are enriched for genes involved in tight junctions,
increased in abundance over the course of lactation, while we
saw a decrease in the proportional abundance of the secretory
lactocyte subcluster whose core enriched functions involve milk
component synthesis and secretion. We also saw a decrease in
milk component synthesis-related genes (UGP2, CHRDL2)
(Fig. 5A) and a decrease in the GO terms gluconeogenesis, hex-
ose biosynthetic process, and glucose metabolic process over
time in both clusters (Fig. 5B). This might suggest a decrease
in transcription of milk component-related genes over the
course of lactation and agrees with previous studies that have
shown a linear decrease in overall protein concentration and
decreased human milk oligosaccharides and lactose synthesis
over the course of lactation (68–70).
Due to our long follow-up study, we were able to capture

late stages of mature milk (late 2 to late 4), possibly observing
alterations in epithelial cells to meet altered demands as babies
begin to eat solid foods. Increased cellular specialization and
altered abundance of epithelial subclusters that we describe may
provide mechanistic insights into changes in the maintenance
of milk secretion over the course of lactation. Future work
should seek to understand how this relates to milk component
production and synthesis in the mammary gland, transport
from maternal serum, or milk volume production. Validation
of these findings in breast tissue is also required to disentangle
the potential impact of changes in epithelial composition of
hBM over the course of lactation due to changes in exfoliation
dynamics during pumping, possibly in addition to actual
changes in breast tissue composition.
We also found that pathways downstream of several hor-

mone receptors—including prolactin signaling, estrogen signal-
ing, and human growth factor signaling—were enriched in the
marker genes of the LC2 cells, indicating that these cells are
likely directly hormonally regulated. Hormones in hBM serve
both as regulators of the mammary gland itself, as well as bioac-
tive components passed to the infant. The LC1 and secretory
epithelial cell subclusters showed opposite changes in expression
of several hormone receptors known to be important for regu-
lating lactogenesis and involution, as well as their downstream
targets over the course of lactation (Fig. 5C). This may suggest
a possible regulatory mechanism of these synthesis and trans-
port changes vis a vis a division of labor between cell types over
the course of lactation. The increase in PRLR expression and
prolactin-regulated targets in secretory epithelial cells and oppo-
site decrease in LC1 subclusters could explain other differential
functions of these cell subclusters over the course of lactation if,
for example, the LC1 cells become more specialized over the
course of lactation and less responsible for milk component
synthesis over the course of lactation, with decreased respon-
siveness to prolactin and decreased JAK2/STAT5-regulated
milk component synthesis. We see similar alterations in the
dynamic expression of several growth factors that regulate milk
production and secretion, like EGF (71). Further studies should
investigate this division of cellular labor and consider the

direction of this regulation and how it might be leveraged ther-
apeutically to potentially aid in milk production.

Our description of the cellular components of breast milk
over the course of lactation, and their putative associations with
maternal–infant dyad metadata, has the potential to provide
insights into mechanisms of milk-component production and
regulation, as well as variability between individuals (1). We
confirm that the majority of cells in human breast milk are epi-
thelial cells, specifically lactocytes, and that cell-type frequencies
are dynamic over the course of lactation. Analysis of lactocytes
reveals a continuum of cell states characterized by subtle tran-
scriptional changes that point to changing populations of milk
component-producing epithelial cells whose activities may be
hormonally regulated. We also identify several subclusters of
macrophages in hBM that are enriched for tolerogenic func-
tions. Taken together, our data provide a detailed longitudinal
study of breast milk cells with single-cell resolution. Further
understanding of cells over the course of lactation—including
B cells, macrophages, and LC1 cells—will build knowledge of
the role of breast milk in infant development by identifying: 1)
cells that are transferred to infant gut, 2) the molecules they
produce that are important for gut and immune system devel-
opment, and 3) the nutrients supplied in hBM (7, 72).
Improved understanding of pathways and activities of breast
milk-producing cells will further inform lactation health and
could provide baseline information for studies of adverse lacta-
tion outcomes. Furthermore, it will aid in establishing eligibil-
ity criteria for milk bank donation, potentially allowing donors
to contribute milk after the typical 1-y postpartum limit (73).

Materials and Methods

Donor Enrollment and Breast Milk Collection. Donors were enrolled in the
Massachusetts Institute of Technology (MIT) Milk Study under an approved proto-
col (Protocol #1811606982) and samples were de-identified prior to use in the
study. Donors were recruited at hospitals, research institutes, and clinics around
the Boston, Massachusetts, area, primarily on the MIT campus. Donors expressed
milk using their method of choice and, where possible, provided that informa-
tion in questionnaires for each sample. To minimize diurnal variations in cell
composition, donors provided milk in the mornings between 6:00 AM and 9:00
AM (74, 75). We also collected extensive donor-supplied metadata for each sam-
ple (Dataset S1), including information about maternal and infant health. Donors
collected a minimum of 0.5 mL of milk, placed in study-provided sample collec-
tion bags, and kept on ice until the sample was collected. Samples were proc-
essed as close to expression as possible (up to 6 h) and kept on ice until cells
were isolated. Donors also provided answers to the study questionnaire with
each sample. Donors provided milk at various time points, covering the follow-
ing milk stages: early 3 to 6 d postpartum (colostrum/early), transitional (10 to
14 d), mature (15 to 18 d), and several later stages (late 1: 5 to 13 wk; late 2:
14 to 25 wk; late 3: 26 to 33 wk; and late 4: 34 to 90 wk). Breast milk was sam-
pled from 15 mothers between the ages of 25 to 34 y (median age 31 y). All
pregnancies were full term with seven donors reporting induced labor, four
reporting C-sections, and all but two donors reporting no prior pregnancies. Four
donors began hormonal birth control during the sampling period. Eight total
samples from six donors were collected after starting day care.

Cell Isolation. To isolate cells directly from whole milk, samples were processed
as previously described (39). Briefly, milk was diluted 1:1 with cold PBS and cells
were pelleted by centrifugation for 10 min at 350 × g. After removal of skim
milk and the fat layer, cells were transferred to a clean tube in 1 mL of cold PBS
and washed three times in 10 mL of cold PBS. The final cell pellet was resus-
pended in 1 mL of cold complete RPMI media (ThermoFisher) containing 10%
FBS and 5% pen/strep (ThermoFisher). Cells were counted with a hemocytometer
and Seq-Well S3 was performed, as described below (76). For experiments com-
paring milk-handling and cell-isolation methods, cells were isolated as described
above from milk that had been sorted at 4 °C or at �20 °C overnight. Frozen
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milk was thawed in a 37 °C water bath prior to cell isolation. For sorting of live
cells, milk cells were isolated directly from milk and stained according to the
manufacturers protocol for Calcein violet (ThermoFisher) and Sytox green (Invitro-
gen) prior to sorting for Calcein violet+ and Sytox green� cells on a Sony Sorter
(SH800S). For enrichment of live cells, directly isolated milk cells were processed
according to the manufacturer’s instructions (EasySep Dead Cell Removal
[Annexin V] Kit).

Generation of scRNA-seq Data with Seq-Well S3. Seq-Well S3 was per-
formed as described previously (76, 77). For each milk sample, about 15,000
cells were loaded onto each array preloaded with uniquely barcoded mRNA cap-
ture beads (ChemGenes). Arrays were washed with protein-free RPMI media,
then sealed with polycarbonate membranes. Arrays were incubated at 37 °C for
30 min to allow membranes to seal, then transferred through a series of buffer
exchanges to allow for cell lysis, transcript hybridization, bead washing, and
bead recovery from arrays postmembrane removal. Reverse transcription was
performed with Maxima H Minus Reverse Transcriptase (ThermoFisher), excess
primers were removed using an Exonuclease I digestion (New England Biolabs),
second-strand synthesis was performed, and whole-transcriptome amplification
by PCR was performed using KAPA Hifi PCR Mastermix (Kapa Biosystems).
Whole-transcriptome amplification product was purified using Agencourt
Ampure beads (Beckman Coulter) and dual-indexed 30 digital gene-expression
sequencing libraries were prepared using Nextera XT (Illumina). Libraries were
sequenced on a NovaseqS4 or NovaseqS2 with a paired-end read structure (R1:
20 bases; I1: 8 bases; I2: 8 bases; R2: 50 bases) and custom sequenc-
ing primers.

Analysis of scRNA-seq Data.
Alignment and quality control. Data were aligned using the Dropseq-tools
pipeline on Terra (https://app.terra.bio/) to human reference genome hg19.
Sequencing saturation curves were generated using custom scripts to ensure
adequate sequencing depth.
Clustering and cell identification. Samples were split into milk-stage groups
for initial clustering and doublet identification. For each sample, Scrublet was
run with default parameters and cells identified as doublets were removed from
downstream analysis (78). For each milk stage, all samples were combined into
a single Scanpy object, cells were filtered with parameters: >400 genes, >750
UMI, <750 counts, <20% UMIs from mitochondrial genes. UMI counts were
log-normalized and the top 2,000 variable genes were identified with the
batch_key parameter set to “sample.” PC analysis was run on scaled data, and a
nearest neighbor map was calculated with 15 neighbors and 25 principal com-
ponents (PCs prior to running Uniform Manifold Approximation and Projection
(UMAP) for visualization. Resulting clusters were robust to multiple choices of
clustering parameters. Clustering of resulting transcriptomes was performed
using Leiden clustering in the Scanpy (https://scanpy.readthedocs.io/en/stable/)
package independently on samples of each milk stage (79). Clusters were classi-
fied as immune cells or epithelial cells for further subclustering based on expres-
sion of PTRPC (immune cells) and LALBA (epithelial cells). Upon subclustering on
each of these subsets, doublets were identified as clusters coexpressing multiple
lineage markers and were removed. Subclustering was performed on the appli-
cable clusters from all time points combined, as reviewed previously (80).
Pseudobulk marker gene identification. To identify marker genes for cell-type
clusters whose specificity to Leiden clusters or cell subgroups was consistent
across donors and samples, we utilized pseudobulk marker gene identification
(81–83). Raw gene-expression counts were pooled by sample and cluster such
that one pseudobulk population was created for each cluster found in each sam-
ple. Psuedobulk groups were filtered to include only sample-subcluster pairs
containing at least 10 cells. Differential expression between clusters of one cell
type and all other clusters was executed using a Wald test in DESeq2 with the
design formula “∼donor + is.thiscelltype”, where the factor ‘is.thiscelltype’ is set
to TRUE for pseudobulk populations from the cluster of interest and FALSE for
other clusters (84). These pseudobulk marker genes were filtered for adjusted
P < 0.05, percent expression of single cells in the cluster >30%, and DESeq2-
calculated log2 fold-change > 0.4. Pseudobulk marker genes of all cell types
(Dataset S2) and epithelial cell groups (Dataset S6), and top marker genes sorted
by difference in percent of cells expressing in-cluster compared to out-of-cluster,
are visualized in Figs. 1C and 3D, respectively.

Epithelial cell subclustering. Epithelial subclustering was performed on com-
bined cells from all samples to identify major cell states within the data and char-
acterize their changes in gene expression over the course of lactation. To enable
these analyses, we identified cell groups that were either distinct enough to be
robust to clustering parameter selection or, for groups of cells whose core identi-
fying gene-expression profiles could not be defined with respect to other clus-
ters, similar clusters were merged and further analysis identified genes changing
over time. Subclustering proceeded by rediscovering the top 3,000 variable
genes on the epithelial subset, rerunning PC analysis on these genes, and clus-
tering with Leiden clustering with resolution 0.7 and 10 neighbors on 22 PCs (SI
Appendix, Fig. S8 A and B). See SI Appendix, SI Text for additional information
on these cluster assignments. After clustering and merging, we represented the
diversity of epithelial cells within each sample using Shannon entropy imple-
mented with the Python function scipy.stats.entropy (SI Appendix, Fig. S8K).
Immune cell subclustering. Immune cells were subclustered separately and
refiltered to remove additional doublets. To accomplish the latter, immune cells
were clustered with a known subset of secretory epithelial cells from our epithe-
lial cell data. This allowed us to generate a gene signature derived of PC1-
specific genes to define lactocytes or monocytes with high confidence (Dataset
S5). We performed module scoring with these in R (v3.6.2) with Seurat (V3),
allowing us to stringently filter for immune cells that scored highly for lactocyte
gene expression (>2.5 SDs above the mean lactocyte module score) (85).
Finally, we identified any additional doublets based on dual expression of key
lineage markers as described above. We performed subclustering analyses by
renormalizing the data, finding the top 2,000 variable genes, rescaling the data,
running PC analysis, then performing additional UMAP visualization with the
first 15 PCs. Supervised marker gene identification was performed across cell
types using Seurat’s Wilcoxon rank-sum test. We also performed subclustering
analyses on the monocytes and macrophages as these were the most abundant
immune cell type. These cells were renormalized, the top 2,000 variable genes
were identified, and the data were clustered across several resolutions to identify
resolutions that produced nonredundant clusters (resolution = 0.2), as deter-
mined by marker-gene identification using Seurat’s Wilcoxon rank-sum test.
Analysis of clustering robustness by leave-one-donor-out clustering described in
SI Appendix, Supplementary Methods.
Identification of time-varying genes. Time-associated genes were identified
for each cluster using pseudobulk analysis. First, the raw counts of all cells in
each sample in each cluster were summed to create sample- and cluster-specific
pseudobulk data. Then DESeq2 was used to identify genes varying over the
course of lactation in each subcluster using a likelihood ratio test between the
design formula “∼ 0 + donor + days_postpartum” over “∼0 + donor” (84).
Samples with a minimum of 10 cells in a cluster were included in the analysis,
and samples from more than 400 d postpartum were excluded from time series
analyses to avoid the small number of very late samples driving a disproportion-
ate amount of variation due to the large gap in time between samples before
400 d postpartum and after. Genes with in-cluster single-cell percent expression
>20% and adjusted P < 0.05 were included in downstream visualization and
enrichment analyses. Heatmaps represent row z-scored, log-normalized per sam-
ple expression of genes of interest. PC analysis on pseudobulk samples from
each epithelial subset was used to identify the primary axis of variation within
each subset by identifying the sample metadata and genes correlated with the
first PC. The first PC of the LC1 epithelial and secretory lactocyte subsets was
highly correlated with time postpartum, so time-dependent gene analyses were
focused on these subsets (Dataset S7). We classified universal epithelial cell
time-varying genes as genes associated with time and changing in the same
direction in both LC1 epithelial and secretory epithelial subsets (Dataset S8).
Time-varying genes in opposite directions in the LC1 epithelial and secretory epi-
thelial subsets were also identified (Dataset S8).
Identification of metadata-associated cellular populations. Associations
between collected covariates and cellular population proportions were tested
using generalized additive models. For each sample, cell cluster proportions
were calculated from the numbers of cells found in each broad cell type by divid-
ing the number of cells in that cluster by the total cells in that sample. Then a
generalized additive model was run for each cell type on samples collected ear-
lier than 400 d postpartum using the mgcv R package with model formula
“celltype_proportion ∼ donor + s(time_postpartum_days, k = 7)” (86). Addi-
tional covariates, including daycare attendance, infant illness, breast soreness,
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supplementation with formula, use of hormonal birth control, solid food con-
sumption, and recent vaccinations were tested with model formulas following
the pattern “celltype_proportion ∼ donor + <covariate>”. Only samples with
complete metadata for a given covariate were included in the corresponding
comparison (SI Appendix, Table S2). In place of multiple testing correction, a con-
servative P value threshold of P < 0.005 was used. Because it is possible that
changes in epithelial cell composition and immune cell composition might be
unrelated, associations with time and other metadata factors were also tested on
proportional abundances within each of these subsets, as described above. Full
model results are shown in SI Appendix, Table S2.
Functional enrichment analysis on epithelial cells. Functional enrichment
analysis on top marker genes was performed using Enrichr using the gseapy
package with the gene set GO_Biological_Processes_2021 (87, 88). GO terms
were curated to identify a limited informative set of terms (SI Appendix,
Supplementary Methods). Heatmap visualizations display per subset mean gene
set score for all genes in the GO term z-scored across subsets. A similar process
identified GO terms changing over time postpartum. GO terms identified to be
changing in the same direction in both the LC1 epithelial and secretory lactocyte
clusters were considered epithelial cell-wide time-varying processes. Full results
are in Dataset S9.

Data Availability. Notebooks to reproduce all analyses performed in R and
Python are available for download (https://github.com/ShalekLab/MIT_Milk_
Study) (89). Raw data are available at the Data Use and Oversight System con-
trolled access repository https://duos.broadinstitute.org/ (accession no. DUOS-
000140) (90). Aligned count data and annotations can be downloaded and
explored as part of The Alexandria Project on Single Cell Portal (https://
singlecell.broadinstitute.org/single_cell/study/SCP1671) (91).
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