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Exploring Tradeoffs in PIM

Motivation: The Need for Fast, Flexible modeling of Processing-In-Memory (PIM) Accelerators

Analog PIM makes the design 
space much larger!
Novel Storage Devices

Analog/Digital Peripheral Circuits
Limited-Resolution Components
Hardware/Software Codesign

PIM Crossbar multiply-accumulates 
inputs with programmed 

conductances.
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Tradeoffs in Sparsity
Digital-Analog-Converters can skip zero 
input bits, trading off accuracy, sparsity, 

efficiency, and throughput[9].
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Tradeoffs in Mapping
Data in PIM-Crossbars can be replicated to complete multiple convolution steps / vector 
multiplications at once or stored across multiple devices to increase resolution [2].
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Tradeoffs in Memory 
Cells

Cell choice can have 
orders-of-magnitude 

effect on the read 
energy, write energy, 

area, and endurance of 
the system [4]. 
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Need a fast, flexible 
framework to:

✓ See The Impact of New Circuits 

And Devices
✓ Understand the Design Space
✓ Fairly Compare Design Choices
✓ Fairly Compare PIM and Non-

PIM Accelerators

There is a large design space for 
digital DNN accelerators

Dataflow
Memory Hierarchy

Sparse/Dense DNN Support
Flexibility

How do we compare design 
decisions across architectures?

NVM Storage Devices

Analog-Digital 
Converter Designs

Hardware-Aware DNN 
Algorithms

DNN Accelerator 
Design

There is plenty of exciting 
research in devices, 

circuits, and algorithms for 
PIM accelerators

But how do new 
innovations impact 

accelerator 
designs?

?

Tradeoffs in Analog-Digital Conversion
Circuits can reduce expensive conversions, but may increase 

converter complexity [2, 10].
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Infrastructure
Infrastructure simulates PIM DNN accelerators up to 10,000x faster, provides flexible architecture models, and has easy-to-modify 
components.
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Example Experimental Results
Design A uses 512x512 2-bit ReRAM crossbars and a 1-bit digital-analog-converter. Design B uses 170x128 SRAM 
crossbars and a 2-bit temporal digital-analog-converter. Tested with ResNet18.

The framework is used to model the RAELLA architecture in ISCA ‘23. Below, we show the energy ablation study from the 
RAELLA paper. The framework was used to model designs flexibly for a range of DNNs.
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ISAAC: 8b ISAAC
①: Center+Offset Weights + ISAAC
①②: Adaptive Weight Encoding + ①
RAELLA: Full RAELLA with speculation
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