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Figure 1: To stylize a 3D model with Generative AI without affecting its functionality a user: (a) selects a model to stylize,
(b) segments the model, (c) automatically classifies the aesthetic and functional segments, (d) selectively styles only the aesthetic

segments, and (e) fabricates their stylized model.

ABSTRACT

With recent advances in Generative Al it is becoming easier to
automatically manipulate 3D models. However, current methods
tend to apply edits to models globally, which risks compromising
the intended functionality of the 3D model when fabricated in the
physical world. For example, modifying functional segments in
3D models, such as the base of a vase, could break the original
functionality of the model, thus causing the vase to fall over. We
introduce a method for automatically segmenting 3D models into
functional and aesthetic elements. This method allows users to se-
lectively modify aesthetic segments of 3D models, without affecting
the functional segments. To develop this method we first create a
taxonomy of functionality in 3D models by qualitatively analyz-
ing 1000 models sourced from a popular 3D printing repository,
Thingiverse. With this taxonomy, we develop a semi-automatic
classification method to decompose 3D models into functional and

“Equal contribution

aesthetic elements. We propose a system called Style2Fab that al-
lows users to selectively stylize 3D models without compromising
their functionality. We evaluate the effectiveness of our classifica-
tion method compared to human-annotated data, and demonstrate
the utility of Style2Fab with a user study to show that functionality-
aware segmentation helps preserve model functionality.
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« Human-centered computing — Human computer interac-
tion (HCI).

KEYWORDS
personal fabrication; digital fabrication; 3d printing; generative AL

ACM Reference Format:

Faraz Faruqi, Ahmed Katary, Tarik Hasic, Amira Abdel-Rahman, Nayeemur
Rahman, Leandra Tejedor, Mackenzie Leake, Megan Hofmann, and Stefanie
Mueller. 2023. Style2Fab: Functionality-Aware Segmentation for Fabricat-
ing Personalized 3D Models with Generative Al In The 36th Annual ACM



UIST ’23, October 29-November 01, 2023, San Francisco, CA, USA

Symposium on User Interface Software and Technology (UIST ’23), October
29-November 01, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3586183.3606723

1 INTRODUCTION

A key challenge for many makers is modifying or “stylizing” [1, 36]
open source designs shared in online repositories [4, 23] (e.g., Thin-
giverse [8]). While these platforms provide numerous ready-to-
print 3D models, customization is limited to changing predefined
parameters [1]. While recent advances in deep-learning methods
enable aesthetic modifications in 3D models with styles [12, 32, 48],
customizing existing models with these styles presents new chal-
lenges. Beyond aesthetics, 3D printed models often have designed
functionality that is directly related to geometry. Manipulating
an entire 3D model, which can change the whole geometry, may
break this functionality. Styles can be selectively applied, but this
requires the maker to identify which pieces of a 3D model affect the
functionality and which are purely aesthetic — a daunting task for
users remixing unfamiliar designs. In some cases, users can label
functionality in CAD tools [16, 51], however, most of the models
shared in online repositories are 3D models that have lost this key
meta-data.

To help makers make use of emerging Al-based 3D manipula-
tion tools, we present a method that automatically decomposes
3D meshes designed for 3D printing into components based on
their functional and aesthetic parts. This method allows makers to
selectively stylize 3D models while maintaining the desired original
functionality. Derived from a formative study of 1000 designs on the
Thingiverse repository, we contribute a taxonomy for classifying
geometric components of a 3D mesh as (1) aesthetic, contributing
only to model aesthetics; (2) internally-functional, related to assem-
bly of component-based models; or (3) externally-functional, related
to an interaction with the environment. Based on this taxonomy,
we contribute a topology-based method that can automatically
segment 3D meshes, and classify the functionality of those seg-
ments into these three categories. To demonstrate this method,
we present an interactive tool, “Style2Fab”, that enables makers
to manipulate 3D meshes without modifying their functionality.
Style2Fab uses differentiable rendering [20] for stylization as pro-
posed in Text2Mesh [32]. Our work demonstrates how we extend
these methods to enable complex manipulation of open-source 3D
meshes for 3D printing without modifying their original function-
ality.

Consider a leading scenario where an inexperienced maker, Alex,
wants to stylize the outside of a 3D printable self-watering planter
Figure 1. Conceptually, Alex understands that the base needs to
stay flat and the interlocking segments of the two components of
the model should remain unchanged. But she does not know how to
isolate these regions in the two 3D meshes. She processes the models
in Style2Fab, where our functionality-aware segmentation method
segments the two models, and labels the base and interlocking
segments as functional. Our method has done the work of tediously
editing the model for her, allowing her to verify that the model’s
functionality was preserved on the segment level. She applies her
style only to the outer edge of the planters and sends it off to the
3D printer. She uses the final design to grow herbs on her desk.
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In the remaining sections, we survey the literature on tools that
support makers in modifying 3D printable models and present a
formative study on 3D model functionality in the context of 3D
printed designs shared online. We then present our method for auto-
matically segmenting and classifying the functional components of
3D models. Next, we present the Style2Fab system which uses this
segmentation method to help makers stylize 3D printable designs.
We use Style2Fab to evaluate if our classification and segmentation
method can help makers modify existing designs without breaking
their functionality.

2 RELATED WORK

To situate our findings and proposed system, we draw upon research
on open-source 3D designs, support tools for 3D modeling and
printing, systems for functionality-aware design, and data-centric
methods for 3D manipulation.

2.1 Personalizing Open-Source 3D Designs

As 3D printing emerged as expert-amateur makers’ digital fabrica-
tion tool of choice [23], they began to share their 3D models and
designs online in open repositories. Alcock et al. [1] argue that this
makes online repositories like Thingiverse ideal training grounds
for novice makers. Numerous studies have explored the practices
of these novice makers [3, 18, 35, 43] and tend to find that makers
struggle to make any modifications to existing designs because of
the limitations of current computer-aided design (CAD) workflows.
Unfortunately, the types of designs shared (e.g., 3D meshes) are
largely incompatible with the capabilities of these novices. Tools
for editing 3D printable meshes require advanced expertise [44].
Oehlberg et al. [36] observed that, even when designs are customiz-
able, they lack the full range of modifiable features makers seek.

2.2 Supporting users in Fabrication Workflows

One approach to address this issue is to build on the model formats
makers are more likely to share: 3D meshes. Researchers have de-
veloped a variety of unique tools with that approach. Grafter [41]
automates the process of recombining mechanical elements of 3D
printed mechanisms. Similarly, AutoConnect [22] presents an auto-
matic method for creating 3D printable connectors to attach two
physical objects together. RetroFab [40], Makers’ Marks [42], and
Robiot [27] offer different approaches to modifying physical inter-
faces. Reprise [7] takes a domain-focused approach and analyzes
the features of assistive 3D printed devices to create remixable pat-
terns. Alternatively, systems like Encore [6] and Medley [5] offer
ways to integrate real-world objects into existing 3D models.

Several optimization algorithms target post-fabrication physical
properties of 3D models, such as balance [38], moment-of-inertia for
spinnable models [2], or constrained optimization between center-
of-mass and balance [37, 56]. Other proposed systems provide users
with design capabilities and existing functionality, such as adding
helical springs and joints to allow deformation and extension [14],
designing hand-launched free-flight glider airplanes [50], and em-
bedding rotary, linear and chained mechanisms within 3D objects
for laser cutting [26].
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2.3 Functionality-Aware Design in 3D Models

Another approach to addressing the barrier to personalizing open-
source designs is to prompt makers to produce better models with
meta-data specific to fabrication. Making modifications on 3D
models with the intent of fabricating them can be a complex pro-
cess since the modifications have to satisfy fabrication constraints.
Schmidt et al. [43] proposed an approach called ‘Design to Fabricate’
with an aim towards such modifications. The related tool Mesh-
mixer [44] allows users to manipulate 3D models with the intent to
3D print them afterwards. Shugrina et al. [47] define a ‘Fab Form’ as
any design representation that lends itself to interactive customiza-
tion by a novice user, while remaining valid and manufacturable. In
their proposed system, they achieve these requirements for general
parametric designs (previously tagged) with a general set of auto-
mated validity tests and exposing a small number of parameters to
the user. Schulz et al. [45] enable makers to combine parameterized
template parts from a database to create new models. CODA [51]
extends this work by proposing an interactive support tool that
communicates the implications of parametric manipulations on
CAD models to users, based on static and dynamic constraints from
the model. Other systems present interactive tools and algorithms
to design functionality-aware objects. Zhang et al. [55] propose an
approach to retarget existing mechanical templates to user-specific
input shapes using parameterized mechanisms. Hofmann et al. [16]
present a system that allows modelers to graphically specify their
design intents by associating 3D model geometry with small snip-
pets of code that can modify or evaluate that geometry as it is edited
in the 3D modeling environment.

However, the majority of the models shared online [1] are in the
form of 3D meshes, which do not always have the necessary meta-
data required to allow such parametric manipulations. Given this
constraint, an approach to allow personalization of shared models
is to segment models into elements related to ‘aesthetics’ and those
related to ‘function’. Post-segmentation, users can manipulate the
‘aesthetic’ components while preserving the functional segments.
Laga et al. [24] present a heuristics-based method to find semantic
correspondences between segments in 3D models for four classes
of models (Candles, Vases, Chairs, and Lamps), while Lun et al. [30]
present a style transfer method using local substitution, removal,
and other operations. Zheng et al. [57] present an approach for
reusing model parts to create new designs by leveraging the sym-
metric functional substructure between models. Style2Fab extends
this line of work by presenting a functionality-aware segmenta-
tion approach that leverages segment-level similarity in 3D models
to classify functionality. Using this approach, we present a semi-
automatic method to separate aesthetic and functional elements
in 3D models, allowing users to stylize 3D models without losing
functionality.

2.4 Data-Centric Methods for 3D Manipulation

Novel methods such as deep learning leverage larger datasets of 3D
models to gain generalizable insights. Hanocka et al. [13] proposed
MeshCNN, a convolutional network to reduce complexity in 3D
models based on the observation that 3D models contain redundant
information and can be compressed without losing their most im-
portant traits; this representation can then be used for tasks such
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as classification and segmentation. Yu et al. [54] used a large, well-
annotated PartNet [33] dataset to identify semantic relationships
between different 3D models.

These deep learning based methods can also be used to ma-
nipulate the geometry in 3D models. Text2Mesh [32] and TextDe-
former [12] leverage CLIP [39] representation to manipulate 3D
models based on text prompts, while 3DHighlighter [9] uses CLIP to
localize semantic regions on 3D models. Siddiqui et al. [48], Suzuki
et al. [49], and Yin et al. [53] support applying textures to target sur-
faces of 3D objects based on multimodal inputs. Finally, approaches
such as Shape-E [19] and Magic3D [28] allow generation of 3D
models with text-prompts.

The development of these novel approaches has the potential
to enhance the current workflow for makers and new creators.
However, its important to explore which component of this process
should be augmented with these novel techniques. In this paper,
we focus on stylizing 3D models and explore how data-centric
methods can help users separate functional from aesthetic elements,
allowing them to stylize the aesthetic parts of the 3D models without
compromising functionality.

3 FORMATIVE STUDY

One of the key challenges in modifying 3D printable models is
ensuring that they remain functional. This requires a maker to care-
fully identify which parts of a design contribute to the functionality
and which parts contribute only to the model’s aesthetics. The aim
of this formative study is to identify functionality descriptors in
a wide variety of 3D models. To do this we qualitatively coded
1000 designs sourced from Thingiverse using a similar approach
to Hofmann [16] et al. and Chen et al. [7]. From these codes, we
developed a taxonomy of 3D model functionality.

3.1 Data Collection

Thingiverse is a popular online resource for novice and expert mak-
ers to share 3D printing designs or things'. While some models are
shared in editable formats, most are shared as difficult-to-modify
3D meshes in OBJ and STL file formats (OBJ/STL). We collected
and analyzed the 1000 most popular? things on Thingiverse as of
January 23rd, 2023. Although large-scale datasets exist for segmen-
tation tasks (COSEG [52] and PartNet [33]), we found that sampling
models from Thingiverse provides a wider variety of 3D models
suited for fabrication since existing data sets are not intended for
3D printing.

We organized and standardized all 3D models included in these
1000 things. We first excluded any 3D models that were not in an
STL, OBJ, or SCAD format, limiting our data to 3D meshes. We
excluded all corrupted 3D models, and the ones shared without
the three given formats. We converted all remaining models to
the OB] format. Next, we manually excluded duplicate meshes of
varied sizes since this would not contribute to our classification
of functional components. For highly-similar models shared as a
collection (e.g., ‘Fantasy Mini Collection’, Thing ID: 3054701), we

1A thing refers to a design that may include many 3D meshes. We use the term model
to refer to one 3D mesh file rather than all of the independent components shared in a
thing.

The popularity metric is determined by Thingiverse which aggregates downloads,
shares, likes, and remix counts.
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Figure 2: Categories of 3D models based on functionality: (a) We identify four categories of models defined by two dimensions:
Artifact vs Task-Related and Single vs Multi-Component models. These dimensions align with differences between external
and internal contexts, (b) shows an example of external and internal functionality on segments of a vase and a self-watering

planter.

kept only a single mesh. After this preprocessing, we had a total
of 993 different Thingiverse things, comprising 10,945 unique 3D
models (i.e., objects or parts of objects).

3.2 Inductive Taxonomy Development

We used an iterative qualitative coding method to develop our tax-
onomy of functionality. We first inductively coded 100 randomly
selected models to develop an understanding of the functionality of
these 3D-printed models. After negotiation across coders, we iden-
tified two distinct categories of 3D models based on their function-
ality: Artifacts and Task-Related Models. Artifacts are objects that
serve primarily aesthetic purposes, such as statues. Task-Related
models have been designed to help perform a specific task, such
as a phone stand or battery dispenser. Both Artifacts and Task-
Related models can be composed of single or multiple components
assembled together Figure 2.

From this classification of types of models, we determined two
axes that we can use to classify if a segment of a 3D mesh can be
modified without changing the intended functionality of the design.
The first axis is external context, which describes how the surface
of the segment interfaces with the real world to affect the function-
ality of the model (e.g., the flat base of a planter interfaces with
a table surface). Most Artifacts have few segments with external
contexts, while Task-Related models have many. The second axis is
internal context; a segment has high internal context if it interfaces
with other segments within the same thing to affect the design’s
functionality (e.g., linkages in an articulated lizard). Segments that
do not have internal or external context are considered aesthetic
since they do not affect functionality. Segments without internal
and external context can readily be modified since they only serve
an aesthetic purpose.

3.3 Deductive Functionality Classification

Using this taxonomy, we then labeled our entire data set of 993
models based on the two types of designs and the axes of internal
and external context. For each 3D model, two annotators examined

the associated Thingiverse meta-data to understand the intended
functionality of the model using shared images of the model being
used in specific scenarios. Independently, each annotator labeled the
model as Artifact or Task-Related based on its external functionality.
This resulted in a Cohen’s Kappa inter-rater reliability score of 0.94.
They negotiated differences to finalize the labels for each model,
reaching full agreement. Two examples of models that required
negotiation are ThingID:3096598 (Chainmail) and ThingID:1015238
(Robotic Arm). The annotators resolved the former to be an Artifact
because the Thingiverse page did not showcase any task-specific
use case, and the latter to be Task-Related since its metadata con-
tained videos describing a specific functionality. Following data
classification, we removed all models that had no aesthetic seg-
ments because these cannot be readily modified. This exclusion
primarily removed models used for calibrating printers where any
change would have changed the functionality. Our final, labeled
data set contained 938 models and is summarized in Table 1.

Single-Component Multi-Component Total

Artifact 46 320 366
Task-Related 91 481 572
Total 137 801 938

Table 1: Counts of Thingiverse designs based on dimensions
of internal and external functionality. Rows reflect external
context and columns reflect internal context.

4 FUNCTIONALITY-AWARE SEGMENTATION

Our formative study helps us better understand the types of func-
tional segments that affect the functionality of the model. Based on
these results and our data set, we present a method for functionality-
aware segmentation and classification of 3D meshes designed for
3D printing. In this section, we first define our segmentation prob-
lem and present our segmentation approach. Next, we present a
method for classifying internal and external functionality on each
segment of a model. We present our approach to tuning important
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hyper-parameters that affect the efficacy of our method and an
evaluation of our classification approach compared to labels gener-
ated in our formative study. Finally, we present our Style2Fab user
interface developed using this functionality-aware segmentation
approach.

We use an unsupervised segmentation method based on spectral
segmentation that leverages the mesh geometry to predict a mesh-
specific number of segments. This method allows us to generalize
across 3D printable models with diverse functionality. Using our
Thingiverse data set, we evaluated this method for its accuracy
in predicting the number of functional segments and its ability to
handle a wide range of mesh resolutions.

4.1 Segmentation Approach

The process of segmenting a 3D mesh can be defined as finding a
partition of the mesh such that the points in different clusters are
dissimilar from each other, while points within the same cluster
are similar to each other. We use a spectral segmentation process
that leverages the spectral properties of a graph representation of
the 3D mesh to identify meaningful segments. By examining the
eigenvectors and eigenvalues of the graph norm Laplacian matrix,
this method captures the underlying structure of the mesh and
groups similar vertices together, resulting in a meaningful partition
of the model.

Consider a 3D mesh as a graph where nodes represent a set
of faces and edges represent connections between adjacent faces.
The segmentation problem is to decompose the mesh into k non-
overlapping sub-graphs that represent a piece of the model with
consistent features (e.g., the base, outer rim, and inside of a vase).
The hyper-parameter k can be any integer value between 1, one
segment containing all faces in the mesh, and n, one segment for
every individual face in the mesh. If k is too low, the segments will
not be able to isolate components with unique functionality (e.g.,
the base of a vase is not separate from the outside). If k is too high,
functional components of the model may be split into multiple
segments and may be modified in incompatible ways (e.g., half of
the base is stylized with a surface texture and the other half has
the original flat surface). A key challenge in functionality-aware
segmentation is automatically selecting a value of k for each design;
we do not assume that makers will be able to easily identify a good
value of k when examining a design.

4.1.1  Predicting the Number of Segments. We use a heuristic-based
approach for estimating a value of k that partitions a mesh into
segments that isolate functionality. Using a 3D mesh’s degree- and
adjacency-matrix, we use spectral decomposition [21] to extract an
eigenbasis for the mesh. This allows us to use the resulting eigen-
value distribution, representing the connectedness of a mesh, to
identify a partition yielding the highest connectedness for individ-
ual segments.

We first describe the spectral segmentation approach. Given a
3D mesh where F represents the set of faces, we first construct
a weighted adjacency matrix W. The element W;; represents the
similarity between faces f; and fj, calculated using the shortest
geodesic distance between the centers of faces f; and f; and the
angular distance between them as defined by [21].
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We use the weight matrix, W, and the degree matrix, D in order
to compute the eigenvectors and values of the face graph. Formally

defined as the norm Laplacian of a graph, L = \/BTW\/B. From
the eigenvalues of L, we are able to capture the connectedness
of the mesh, where large gaps between eigenvalues imply weak
connectedness.

In the approach proposed by Liu and Zhang [29], the eigen-
vectors corresponding to the smallest k eigenvalues A are used
to construct a k-dimensional feature space, where k is the desired
number of segments. Instead of using the smallest k eigenvalues, we
analyze the entire distribution of eigenvalues A. A high standard de-
viation in the eigenvalue distribution indicates that the eigenvalues
are spread out over a wide range, which suggests a more complex
graph structure with varying connectivity and potentially multiple
distinct clusters or segments. In this case, the graph may benefit
from a more refined segmentation process. On the other hand, a low
standard deviation implies that the eigenvalues are more tightly
clustered, which suggests a relatively uniform graph structure with
fewer distinct clusters. In this case, it would be sufficient to parti-
tion the graph into a lower number of clusters. We leverage this
distribution to automatically calculate a value of k. Specifically, we
calculate the number of eigenvalues that have a higher dispersion
than the distribution’s standard deviation, using Equation 1.

k=WAi:Ai>p+o,i=1,...,n} (1)

Once we have extracted the lowest k eigenvectors and their
corresponding eigenvalues we follow Liu and Zhang’s [29] segmen-
tation method that uses k-means clustering to identify segments
spanning from the n faces captured by these high-variation eigen-
vectors. Based on the resulting clusters, we assign each face in the
mesh graph to its corresponding segment, resulting in a segmented
3D model.

4.1.2  Uniform Mesh Resolution for Segmentation. This segmen-
tation approach is dependent on a uniform resolution of a mesh;
non-uniform meshes will produce incoherent segmentation as some
portions of the model are represented by too few faces and other por-
tions have too many faces. Unlike other segmentation approaches,
our data set of real-world models did not have consistent resolution
and this would have affected the utility of our method. Thus, we
re-mesh all models to give them a uniform 25k resolution using
Pymeshlab [34]. Note that this process’ runtime increases with the
resolution. Therefore, we want a low-resolution value that does not
negatively affect our segmentation and classification method.

We determined that resolution to be 25k (vertices) by segmenting
and comparing 100 randomly selected 3D models from our data
set. For each mesh, we segmented the remeshed models with 15K,
20K, 25K, 30K, and 35K vertices. We then looked for the lowest
resolution that stabilized the predicted number of segments k. That
is, for all higher resolutions, the number k did not change. For 88%
of models, a 25k resolution stabilized this value. The segmentation
at 25K resolution took an average of 72 seconds, while segmentation
at 30K resolution took an average of 102 seconds. Figure 3 shows
the effect of mesh resolution on the number of models it stabilized
and the time it took to complete segmentation.
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Figure 3: Comparison plots of the number of stabilized mod-
els (green) and segmentation time (blue) against mesh reso-
lution.

4.2 Analyzing Functionality in 3D Models

After segmentation, the system must classify each segment as func-
tional or aesthetic. To do this we use a heuristic that infers that if a
segment i is topologically similar to (i.e., shaped like) another seg-
ment j, the functionality of i will be the same as j. Thus, to classify
each segment, we must find some similar topology that has already
been labeled as functional. Using the taxonomy of internal and ex-
ternal functionality from our formative study, we can break up the
problem of finding a similar, labeled segment j into two approaches:
(1) we analyze external functionality by identifying topologically
similar segments in models in our Thingiverse data set, and (2) we
determine internal-functionality in multi-component models by
identifying linkages between components based on topologically
similar segments. However, it is critical to compare segments and
their parent meshes because comparing only segments introduces
noise. Segments without the context of their parent mesh are just
geometrical features that, while topologically similar, are likely to
be used in different ways.

4.2.1 Using Similarity as a Heuristic: We hypothesize that similar
models will use similar geometries to enact a similar functional-
ity. We use the approach of measuring topological similarity from
Hilaga et al. [15], which uses a Multiresolution Reeb Graph repre-
sentation (MRGs) of meshes to analyze the similarity. This method
is ideal for our domain due to its invariance to translation, robust-
ness to connectivity variations, and computational efficiency. Note
that we can use this method on both whole meshes and individual
segments since a segment is, itself, a mesh of connected faces. Thus,
given segment s; in a mesh m; and segment s; in mesh mj, the
contextual similarity Contextual_Sim(s;, s;) is the product of the
similarity between the segments and their parent meshes (Equa-
tion 2). This gives us a value between 0 (i.e., a complete topological
mismatch) and 1 (i.e., identical topology).
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Contextual_Sim(s;, sj) = sim(m;j, mj) - sim(s, s;j) (2)

Given a segment s in mesh m and a set of other meshes M, we
can find the similarity between s and all of the segments S in the
other meshes. From these similarity values, we decide the label of
s’s functionality by comparing it to the labels on the subset of S
that are most similar Sg;p,. We take a uniformly weighted vote of
the labels on each segment in Sg;;;, and classify s as the majority
label. Regardless of the similarity of these most similar segments,
we weigh their label votes equally. We empirically found that the
accuracy of functionality classification converges after comparing
s to five other similar segments (i.e., [S| = 5).

Now that we have a method of labeling a segment based on a
related set of pre-labeled meshes M, we must find mesh sets that
help us to identify, separately, internal and external functionality.
The size of M will have a significant effect on the time it takes to
compute segment similarity. For each mesh m; in the set, there
will be k; segments to compare to s. Thus, as the size of the mesh
set increases the number of similarity comparisons increases by a
factor of k; and quickly becomes too time-consuming to compute.
To classify functionality, we need to find a small set M that provides
the most information about the segment with the least amount
of noise. Our insights into the differences between internal and
external functionality help us to select good sets of meshes.

4.2.2 Classifying External Functionality. To identify external func-
tionality, we compare segments to models that function similarly
using similar geometric features. We built a labeled data set of seg-
mented models from Thingiverse for identifying external function-
ality from the 46 Artifacts and 91 Task-Related single-component
models in our data set. First, we segmented all of these models
using our segmentation method and produced 1151 different seg-
ments. Then two annotators analyzed each segment with contex-
tual information from the parent model’s Thingiverse page and
independently labeled the segment as Aesthetic or Functional. We
also asked the annotators to independently label a segment if it
contained an Aesthetic and Functional component fused together
(inefficient segmentation). After reviewing all segments, they had
an inter-rater reliability of 0.97. They negotiated all disagreements
to produce our ground truth classification of segment type. At the
end of the study, 51% of the segments were annotated as Aesthetic,
while 49% segments were annotated as Functional. From the func-
tional segments, the annotators agreed that 24 segments (2%) from
17 different (12.4%) models were composed of Aesthetic and Func-
tional elements fused together, leading them to annotate the entire
segment as Functional.

Naively, we could classify the external functionality of a segment
s in a mesh m by comparing it to all meshes in this data set. However,
this would be computationally expensive and introduce noise since
segment-level similarity may occur between segments that are used
in different ways in models with different uses. Thus, we prune the
set of labeled models by first comparing mesh-to-mesh similarity.
Thus, we collect the set of most-similar meshes M;,, from our
data set. As shown in Section 4.2.1, we found that five meshes were
sufficient. Considering External Functionality to be a binary label,
we got a Precision score of 74% and a recall of 88%. Hence, this is
a conservative approach towards functionality prediction, where
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the classifier has a higher false positive rate. It is more important
that the system does not modify functional components than that
it misses aesthetic components.

4.2.3 Classifying Internal-Functionality. Similar to the case of exter-
nal context, we can identify internal functionality by comparing a
segment to a set of segmented models with similar internal function-
ality. However, internal context is dependent on similarity within a
group of meshes that make up a mechanism. Two segments have
internal functionality if they interface with each other to form a
linkage in a mechanism. Thus, our problem was to identify pairs of
segments between components (multiple models that compose a
single mechanism) and classify them as internally functional. We
approach the problem in the following manner: We first create the
set (Combinations(M,,)) containing all possible pairs of segments
not from the same mesh. For any model m, we can now search over
all possible pairs of segments between different meshes from the
set Combinations(M,,), and identify similar segments.

In this case, instead of assigning the label by taking a vote across
the five most similar segments (i.e., Ssjm), we decide that there is a
linkage between a segment s and another segment s¢, in another
component mesh, if they have a similarity value greater than the
hyper-parameter «. In the case that multiple segments have high
enough similarity, s, will be the segment with the highest similarity
to s. Once identified, we label both s and s, as having internal
functionality.

To increase efficiency, we prune the number of segment compar-
isons in this process. First, we can exclude all segments in meshes
that have been labeled as having external functionality. Ultimately,
we are looking for a single binary label between aesthetic and func-
tional, so it does not matter if a segment is both internally and
externally functional. Second, as we identify linkages we can re-
move both s and s; from future comparisons within the mechanism
because linkages are formed of only two segments.

To decide that two segments are sufficiently similar to be consid-
ered a linkage, we need a threshold similarity value of a. To identify
this threshold we gathered ground truth data from our data set. Two
researchers annotated segments of the multi-component models
in our data set to identify linked segments. We randomly selected
50 things with multiple components which contained a total of
157 component meshes. For each model, two annotators indepen-
dently labeled all pairs of segments that formed a linkage in the
mechanism resulting in an inter-rater reliability score of .99. They
negotiated disagreements and produced a ground truth dataset.
From this data set, we identified an effective threshold similarity
score @ = 0.86 by evaluating the precision and recall across multi-
ple a values. We found that @ = 0.86 maximized the identification
of functional segments and then minimized the misidentification
of aesthetic segments. By this analysis, we got a precision value
of 64% and a recall value of 86%. Like classifying external context,
we prioritize high recall over precision since the cost of missing a
functional segment will break a model while missing an aesthetic
segment will only affect aesthetics. Therefore, we opted to have
a more conservative classifier for both the internal and external
functionality.
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Original Model

Figure 4: A demonstration of the differences between
functionality-aware and global styling. A “flexi cat” model
(Thing: 3576952) is shown (a) without styles, (b) with
functionality-aware styles, and (c) functionally broken by
global styles.

4.3 Stylization of Segments

We use Text2Mesh [32] to stylize models based on text prompts.
Text2Mesh uses a neural network architecture that leverages the
CLIP [39] representation. The system considers a 3D model as
a collection of vertices, where each vertex has a color channel
(RGB) and a 3D position that can move along its vertex normal.
Text2Mesh reduces the loss between the 3D model rendering (CLIP
representation) from different angles and the CLIP representation of
the textual prompt using gradient descent. Text2Mesh makes small
manipulations in both the color channel and vertex displacement
along the vertex normal for each of the vertices in order to make
it look more similar to the text prompt. This allows the system to
generate a stylized 3D model that reflects the user’s desired style.
This method will stylize the whole mesh and change the topology
of the functional segments. In Figure 4a-c, we show that global
stylization can render a functional object, in this case, an articulated
cat, inoperable. We augment this system by adding an additional
step of masking the gradients and setting functional vertices to zero.
This allows manipulation of the color and displacement channels
while preserving the functional segments of the model. As specified
in Text2Mesh [32], we run this optimization for 1500 iterations.
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Figure 5: In the Style2Fab UI, the user (a) loads their model
and (b) browses the functionality labels after segmentation.
(c) In the case of multi-component models, the user can ex-
amine and adjust linked segments between components.

4.4 Style2Fab User Interface and Workflow

Style2Fab is a plugin for the open-source 3D design software tool
Blender. To stylize a model with Style2Fab, the user must: (1) pre-
process their model for segmentation and stylization, (2) segment
and classify the functionality of each segment, (3) selectively apply
a style to segments based on functionality, and (4) review their
stylized model. We break these tasks up into four menus in the user
interface (Figure 5).

4.4.1 Pre-Processing and Segmentation. Once the user has loaded
an OB] file of their 3D mesh into the plugin, they “Process” the
model to standardize its resolution and automatically detect the
number of segments (i.e., k) needed to classify functionality across
the model (Figure 5b). By default, the resolution is set to 25k faces
based on our evaluation. Next, the system will segment the model
and give each segment a unique color to help the user visually
identify the segments. If the user wants more or fewer segments
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they can modify the value of k in the interface and re-segment the
model. For multi-component models, the user can load multiple
meshes representing each component and segment them in parallel.

4.4.2  Functionality-Verification of Segments. After segmentation,
the plugin opens panels displaying the type classification of each
segment. Users can then review each segment and determine if
they agree with the classification. The user’s goal is to identify the
set of segments that should not be stylized to preserve the desired
functionality of the design. To simplify this process, the user can
select “Highlight all functional segments” (Figure 5¢) to have all
segments classified as functional highlighted in the user interface. If
they agree with this segmentation, they can move on to stylization.
Otherwise, they can individually review all segments. Next, we
describe the process for the user to review individual segments.

First, in order to verify externally functional segments, the user
can walk through the model’s segments and toggle the functionality
class based on their interpretation of the model. When walking over
a segmented model via the interface, the segments are highlighted
on the model (Figure 5b).

When working with multiple components, the user can review
the segments that were classified as having internal context based
on linkages between components of the model. The user can use
the "Assembly"” panel (Figure 5c) to see pairs of connected segments
on distinct models, and click ‘Separate’ for incorrect assignments.
If the user disagrees with this classification, they can adjust this
similarity parameter a between 0 and 1.

4.4.3 Selective Stylization of Aesthetic Elements. Post verification
of functionality, users can stylize aesthetic segments of a 3D model
by entering a natural language description of their desired style
and clicking "Stylize Mesh". The completed model is then rendered
alongside the original for review. Users can iterate on this process
and apply new styles using new text prompts, or re-segment the
model as needed.

5 USER STUDY

Participant Age Gender 3D Modeling 3D Printing

P1 27 Male 6 4
P2 31 Male 3 1
P3 27 Male 0 1
P4 24 Male 7 5
P5 32 Male 4 4
P6 26 Female 7 7
pP7 27 Male 1 0
P8 23 Male 13 15

Table 2: Participant demographics and years of experience
with 3D modeling and printing.

To evaluate if our functionality-aware segmentation method
supports users in separating functional elements in 3D models that
they did not design, we had eight university students (Table 2)
with varied 3D modeling and printing experience segment and
stylize 3D models from our Thingiverse data set with and without
automatic support from Style2Fab.
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We randomly selected eight 3D models representing each of
our four categories of models based on internal and external con-
text: two single-component Artifacts, two single-component Task-
Related models, two multi-component Artifacts, and two multi-
component Task-Related models. We segmented each model using
our segmentation method and automatically classified the func-
tionality of those segments. Each participant was presented with
two models with segmentation and functionality classification (i.e.,
experimental group) and two models that were only segmented and
that they needed to manually classify (i.e., control group). In each
condition, the participant received an Artifact and Task-Related
model. One of these was always a single component and the other
was a multi-component model. We controlled for model-specific
and learning effects by giving each participant a different combina-
tion of models and conditions.

We asked participants to classify each segment in each model as
functional or aesthetic. In the experimental condition, participants
could accept or modify our functionality-aware classification. In
the control condition, they had to make a manual classification.
After classifying the segments, the users were asked open-ended
questions about their experience. They were compensated with $20
for the hour-long study.

5.1 Findings

In order to understand the differences between the automatic and
manual conditions, we compared the time taken to process a model,
which included the classification runtime for the automatic condi-
tion, and the accuracy and precision of the classification (Figure 6).
The time taken by the users was dependent on the complexity of
the model, with the single-component model taking the least time,
and the multi-component models taking significant time. We con-
ducted a paired one-tailed t-test with 7 degrees of freedom to see
if functionality-aware segmentation significantly improved task
completion time. Across all types of models, we found a significant
improvement in task completion time at the p < 0.05 level (Table 3,
Figure 6). The greatest effects were on models with greater com-
plexity such as multi-component models and Task-Related models
with multiple segments that had external context.

Single-Component Multi-Component Artifact Task-Related

p <001 <0.01 <0.05 <0.01
t -3.20 -8.19 -2.84 -3.17

Table 3: T-test comparison of task completion rates within
subjects. All values are significant.

To analyze the functionality classification accuracy, we com-
pared the user annotations from the study with the ground truth.
To generate the ground truth, two authors annotated the models
collaboratively and then fabricated the original and stylized ver-
sions to verify functionality preservation. On comparing the user
annotations with the ground truth, we found that users were more
accurate in single-component models. But as the complexity in-
creased, users had a hard time finding functional segments. The
automatic classifier significantly improved performance in finding
functional segments with the difference in performance increasing
as the complexity increased (Table 4, Figure 7).
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Figure 6: Box plots show the distribution of task completion
times by condition. The more complex the model, the more
time users save using the automatic classification of func-
tional segments.
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Figure 7: Box plots show the distribution of classification
accuracy by condition. As the complexity of the model in-
creased, the automatic classification helped users identify
functional segments more accurately.

Single-Component Multi-Component Artifact Task-Related

p <0.01 <0.01 <0.05 <0.01
t -3.05 -3.04 -2.50 -3.12

Table 4: T-test comparison of classification accuracy within
subjects. All values are significant.

The participants generally had a positive experience stylizing
models with Style2Fab. P7 said in their open-ended interview that
“being able to know if it is best as decorative or functional for ar-
eas I am uncertain of is helpful. It felt like I was approving choices
rather than making them”. P3 said “highlighting and automation
made the process more precise”, which according to P4 “makes it
easier to prepare components for [...] mesh editing”. Discussing the
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segmentation results, P5 also commented that “the segmentation of
parts is much more uniform with Style2Fab”, while P6 said “models
were usually segmented well, but the results could be better in some
more complicated models”. P8 also said, “it usually got things right,
but segmentation was too broad sometimes”. Commenting on the ex-
perience with the Automatic version, P6 said “this way I don’t have
to think through each one, I can take the suggestion and say yes or no”.
Overall, participants enjoyed stylizing 3D models with Style2Fab
because the functionality-aware segmentation method made them
confident their personalized models would work post-fabrication.

In summary, the results of the user study demonstrate signif-
icant differences between the automatic and manual conditions
in terms of the time taken to process models. The analysis shows
that Style2Fab’s support is more beneficial as the complexity of
the model increases, supporting the effectiveness of the proposed
functionality-aware segmentation method.

6 DEMONSTRATIONS

In this section, we showcase Style2Fab’s functionality-aware styliza-
tion through six application scenarios across four categories: Home
Decor, Personalized Health Applications, and Personal Accessories.
These are all examples of Task-Related models, and they highlight
the versatility of tools that use functionality-aware segmentation
to personalize models.

6.1 Home Interior Design

Interior design is a popular domain for personalized fabrication.
Here, we demonstrate customizing a Self-Watering Planter?, a Task-
Related model containing two components (containing internal and
external functionality). The internal functionality for this model
relates to the assembly of the pot and reservoir, while externally
functional segments include the base and watering cavity. Using
Style2Fab, we segmented the model, verified the functional aspects,
and applied the “rough multi-color Chinoiserie Planter” style. The
fabricated model showcases the desired aesthetics without compro-
mising its self-watering capabilities or stability (Figure 8a). Another
home decor example is the Indispensable Dispenser?, a drink dis-
penser that distributes liquid into six containers via interior cavities
and spouts. We used Style2Fab to preserve the functional segments
(base and interior cavities) and applied a “colorful water dispenser
made of vintage mosaic glass tiles” style to the aesthetic segments.
The resulting dispenser, shown in Figure 8d, retains its functionality
while exhibiting the desired visual appearance.

6.2 Medical/Assistive Applications

“Medical Making” [25] and “DIY Assistive Technology” [4] are
emerging and critical domains for personalized fabrication by non-
technical experts. Social accessibility research [46] shows that con-
sidering both the aesthetic and functional features of medical/as-
sistive devices increases their adoption. However, individuals with
disabilities and their clinicians may not have the time or exper-
tise to personalize devices [17]. We first demonstrate stylizing a
geometrically-complex thumb splint sourced from Thingiverse® to

3https://www.thingiverse.com/thing:903411/
4https://www.thingiverse.com/thing:832751/
Shttps://www.thingiverse.com/thing:5259956
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appear as “A beautiful thumb splint styled like a blue knitted sweater.”
Like the participant from Hofmann et al. [17], we wanted the model
to blend into the sleeve of a sweater (Figure 8b). Our functionality-
aware segmentation method preserved the smooth internal surface
that contacts the skin and holes that increase breathability. The
exterior is stylized and attractive.

Our second example stylizes a tactile graphic of a human heart
to apply unique textures to each region of the heart. This would
make identifying each region easier for a blind person who accesses
the model through touch. Our automatic segmentation and classifi-
cation method identifies different segments of the heart that can be
stylized with different textures (Figure 8e).

6.3 Personalizing Accessories

In this application scenario, we demonstrate how functionality-
aware segmentation can be used to personalize accessories, such
as an Airpods cover and a whistle. We demonstrate Style2Fab’s
personalization capabilities using a Thingiverse Airpods case®. The
interface segmented and preserved the functional aspects, includ-
ing internal geometry and charging cable hole even though our
classification method has no specific information about the external
objects the cover interacts with. We stylized this model with the
prompt: “A beautiful antique AirPods cover in the style of Moroccan
Art (Figure 8e). The resulting model fits the AirPods Pro case and
allowed charging while featuring Moroccan Art-inspired patterns.
Next, we applied styles to the popular V29 Whistle” from Thingi-
verse without compromising its acoustic functionality. The system
preserved the whistle’s resonant chamber and mouthpiece while
styling the exterior with a prompt: “A beautiful whistle made of
mahogany wood”. The functionality-aware styled whistle sounds
like the original whistle (Figure 8f) while the globally-styled whistle
lost its functionality due to internal geometry manipulation.

7 DISCUSSION

Our functionality-aware segmentation method differs from prior
work because it assumes that the user will struggle to translate their
understanding of the functionality of a model into key parameters
of a segmentation method and specific labels for each segment. We
return to the scenario of Alex stylizing her self-watering planter.
Alex can recognize the pieces of the model that contribute to the
self-watering functionality and the pieces that she wants to stylize.
But translating this into parameters of a segmentation method is
non-trivial — Alex would either have to go through trial and error
in adjusting the hyperparameters for segmentation, or tediously
highlight the segments on the vertex-level. Our functionality-aware
segmentation method provides a semi-automatic method for sepa-
rating aesthetic and functional segments allowing Alex to stylize
her model while retaining the functionality.

We designed our functionality-aware segmentation method to be
modular and adaptable to modifications to the underlying methods.
For instance, Style2Fab can be augmented with a more nuanced
classifier to allow functionality beyond external and internal con-
texts. In the next sections, we identify limitations and opportunities
to improve on the concept of functionality-aware segmentation

®https://www.thingiverse.com/thing:4105467/files
https://www.thingiverse.com/thing:1179160



Style2Fab: Functionality-Aware Segmentation for Fabricating Personalized 3D Models with Generative Al

UIST ’23, October 29-November 01, 2023, San Francisco, CA, USA

Figure 8: Application scenarios for Style2Fab (all models sourced from Thingiverse): (a) A multi-component self-watering
planter styled as “A rough multi-color Chinoiserie Planter”. (b) A personalized Thumb Splint styled like “a blue knitted sweater”.
(c) A personalized AirPods cover “in the style of Moroccan Art”. (d) A Drinks Dispenser model styled as “made of vintage mosaic
glass tiles”. (e) A color-coded, textured educational model of the human heart. (f) A functional whistle styled as “A beautiful
whistle made of mahogany wood”

to adapt it to more complex and diverse domains. We expect this
method could be improved by broadening our definition of func-
tionality, creating a larger dataset of labeled classes of functionality,
and using more nuanced evaluations of segment similarity.

7.1 A Broader Definition of Functionality

Form and function are deeply related but do not have a one-to-one
relationship; many forms can perform the same task and many tasks
can be achieved with multiple forms. In our approach, we defined
functionality as a topology-dependent property and ignore usage
context (e.g., hanging a vase vs setting it on a table). In our formative
study of Thingiverse models, the annotators infer a specific context
when labeling each model’s relationship between form and function.
This is reliable because each model has specific affordances (e.g.,
a flat base affords resting on a flat surface). However, makers are
creative and often play with the affordances of models to use them
in new ways.

A more nuanced approach would be to classify specific affor-
dances. Our taxonomy presents a high-level set of affordances for
interacting with external and internal contexts. However, creat-
ing a wider set of affordance-specific labels presents a trade-off.
Some affordances are rare, and most classification methods strug-
gle to label rare events. This calls for a wider set of functionality
labels, beyond our taxonomy of external and internal functional-
ity. Visual affordance is a crucial problem in robotics, with new
approaches and datasets bringing insights into the domain. One
such example is 3DAffordanceNet [10]which contains annotated
data for 23 object categories. The essential difference between the
curated deep learning datasets and online sharing platforms, is
the long-tail distribution of possible designs. Although the classes
represented in these datasets are represented in online repositories,

the open-sharing and creative platform allows users to share novel
and unique ideas, which is opposite to the standardization principle
of these datasets. Thus, there is a need for novel data collection and
analysis methodologies that will allow us to apply deep learning
methods to analyze fabrication-oriented data.

7.2 Limits of Topological Similarity

In addition to limiting our classification to two types of functional-
ity affordances, our classification approach relies on a measure of
segment and model similarity that only accounts for topological fea-
tures. We selected this method because it is robust, computationally
efficient, and does not rely on expensive human-generated labels.
However, other measures of similarity or a measure that accounts
for multiple factors may have produced a more effective classifier.
More refined datasets, such as semantic labels of functionality for
segments, along with a larger number of models would provide
a more robust and informative approach to functionality-aware
segmentation.

7.3 Opportunities for Richer Data Sets

We can improve our functionality-aware classification by expanding
our functionality data set and applying nuanced similarity metrics.
However, like any other classification domain, this requires either
larger sets of unlabeled real-world data or better labels and meta-
data for existing samples. Unfortunately, 3D modeling and printing
domains do not currently lend themselves to creating these types
of data sets. Ideally, we could apply more advanced deep-learning
methods to classify functionality, however, to account for the di-
versity of real-world models, this requires data sets of 3D models
that are orders of magnitudes larger than our current data set.
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There are multiple opportunities to curate or generate function-
ality information for 3D models. Makers could supply better labels
by supplying well-documented source files for their meshes, but
this requires a dramatic shift in the practices of these communities.
More models are shared every day and new sub-domains of making
are emerging with additional labels (e.g., clinical reviews on the
NIH 3D print exchange [31]). Alternatively, the creation of datasets
for 3D printing [11] and the release of novel approaches to 3D
model generation [19] presents an opportunity to use latent repre-
sentations of 3D models to generate meta-data for functionality.

8 CONCLUSION

In this paper, we propose a new approach to functionality-aware
segmentation and classification of 3D models for 3D printing that
allows users to modify and stylize 3D models while preserving
their functionality. This method relies on an insight gained from
a formative study of 3D models sourced from Thingiverse: that
functionality can be defined by external and internal contexts. We
present our segmentation and classification method and evaluate
it using functionality-labeled models from our noisy data set of
real-world Thingiverse models. We evaluate the utility of function-
ality in the context of selective styling of 3D models by building
the Style2Fab interface and evaluating it with 8 users. This work
speaks more broadly to the goal of working with generative models
to produce functional physical objects and empowering users to
explore digital design and fabrication.
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