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Autonomous robots can learn to perform visual navigation tasks from offline human demonstrations and gen-
eralize well to online and unseen scenarios within the same environment they have been trained on. It is chal-
lenging for these agents to take a step further and robustly generalize to newenvironments with drastic scenery
changes that they have never encountered. Here, we present a method to create robust flight navigation agents
that successfully perform vision-based fly-to-target tasks beyond their training environment under drastic dis-
tribution shifts. To this end, we designed an imitation learning framework using liquid neural networks, a brain-
inspired class of continuous-time neural models that are causal and adapt to changing conditions. We observed
that liquid agents learn to distill the task they are given from visual inputs and drop irrelevant features. Thus,
their learned navigation skills transferred to newenvironments. When comparedwith several other state-of-the-
art deep agents, experiments showed that this level of robustness in decision-making is exclusive to liquid net-
works, both in their differential equation and closed-form representations.

Copyright © 2023 The

Authors, some

rights reserved;

exclusive licensee

American Association

for the Advancement

of Science. No claim

to original U.S.

Government Works

INTRODUCTION
Intelligence in natural brains differs from today’s deep learning
systems. The differences are rooted in the ways that these systems
learn to make sense of their environment and manipulate it to
achieve their goals. Natural learning systems interact with their en-
vironments to understand their world. We define understanding as
the ability to capture causality and contexts while learning abstract
concepts to reason, plan, and control (1). This rich representation
learning capability allows agents to extrapolate and perform infer-
ence and credit assignment even in unseen scenarios and out of dis-
tribution (OOD), which is currently beyond the performance
achievable with either overparameterized deep learning systems
(2) or classical statistical learning theory analysis (3), because the
former overfit to their training data and the latter requires the inde-
pendent and identically distributed condition on the data
distribution.

Studying natural brains effectively narrows the search space of
possible algorithms for acquiring intelligent behavior. For instance,
neural circuits in brains are much more robust to perturbations and
distribution shifts than deep neural networks while also being more
flexible in tackling uncertain events compared with deep learning
systems. This is because they deploy both unconscious (to facilitate
changes in distributions faster) and conscious (to distill causal
structure of data and manipulate learned concepts and models) pro-
cesses (1) for decision-making. In contrast, today’s deep learning
systems are incapable of capturing causality using extracted con-
cepts and features explicitly, despite being able to learn quickly
from implicit types of observations.

We find inspiration in the foundational properties of natural
learning systems to transform our current deep representation
learning frameworks, especially for real-world deployment of arti-
ficial learning systems as intelligent agents. In this article, we

explore how biologically inspired priors on neural models and
network architectures can lead to more flexible, robust, and under-
standable decision-making for autonomous robots. In particular,
we investigate how to construct agents capable of generalizing
and achieving zero-shot transfer to new environments for some
tasks. To study zero-shot transfer, we focused on end-to-end
drone navigation tasks from pixel inputs. For example, consider a
scenario where the objective is for a drone agent to navigate to a
static target placed in a forest environment. We trained neural
network agents on a few runs of data collected by a human pilot
in an offline supervised learning setting and observed how the
agents transferred under drastic changes in scenery and conditions,
such as changing from wild to urban landscapes across multiple
seasons. Performing vanilla imitation learning on raw expert dem-
onstrations is sample efficient but generally results in poor closed-
loop (active) testing performance due to policy stationarity and
compounding errors (4).

Specifically, we aimed to develop learning-based solutions to
robot flight control that are robust and transferable to novel envi-
ronments. We studied this problem in the context of the flight
hiking task, where a quadrotor robot controller is trained, in one
environment, to recognize and navigate toward a target by imitation
learning. The resulting policy is then deployed to recognize and
move to the target iteratively in different environments. Achieving
good out-of-distribution performance requires that trained models
learn representations that are causally associated with the task, com-
positionally resilient, and independent of the environmen-
tal context.

There has been extensive research on improving the generaliza-
tion performance of few-shot, one-shot, and zero-shot imitation
learning agents by adopting augmentation strategies (5, 6),
human interventions (7, 8), goal conditioning (9–12), reward con-
ditioning (13–15), task embedding (16), and meta-learning (17).
These advances help design a better gradient descent–based learn-
ing scheme without consideration of the structure of the underlying
policy architecture. In contrast, there is evidence that brain-inspired
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neural dynamics improve the robustness of the decision-making
process in autonomous agents, leading to better transferability
and generalization in new settings under the same training distribu-
tion (18–21). We aimed to leverage brain-inspired pipelines and
empirically demonstrate that if the causal structure of a given task
is captured by a neural model from expert data, then the model can
perform robustly even OOD. In a set of fly-to-target experiments
with different time horizons, we show that a certain class of
brain-inspired neural models, namely, liquid neural networks, gen-
eralizes well to many OOD settings, achieving performance beyond
that of state-of-the-art models.

RESULTS
Our objective is to systematically evaluate how robustly neural ar-
chitectures can learn a given task from high-dimensional, unstruc-
tured, and unlabeled data (for example, no object labels, no
bounding boxes, and no constraints on the input space) and transfer
their capabilities when we change the environment drastically.

Models that can be trained in one environment to perform in a
multitude of other environments have a certain degree of robust-
ness, achieving zero-shot generalization. One approach to obtain
such control policies is scaling up their size with structural scaling
of neural network policies (22–24). The universal law of robustness
(25) suggests that we can obtain robust decision-making systems
(worst-case robustness) by training a large neural network model
of a size of at least n × d, where n is the number of observations
and d is the dimensionality of each sample of the collected
dataset. This theoretical result agrees with the recent advances in
the impressive capabilities of large models (26) on zero-shot and
few-shot generalization across a wide variety of tasks, such as
natural language processing (27–29), text-to-image generation
(30–32), scene understanding (33), and even vision-based control
(23, 34).

On resource-constrained embedded systems such as aerial
robots, however, it is infeasible to take advantage of the intriguing
generalization properties of large models because of their high com-
putational cost of inference. Recently, a class of compact and brain-
inspired continuous-time recurrent neural networks has shown
great promise in modeling autonomous navigation of ground (18,
19) and simulated drone vehicles end to end in a closed loop with
their environments (21). These networks are called liquid time-
constant (LTC) networks (35), or liquid networks. They are formu-
lated by a nonlinear state-space representation that has the ability to
account for external and internal interventions during training (36).
These properties make them a great candidate for achieving OOD
generalization.

It is challenging for machine learning agents to extract the cause
and effect of a given task from unstructured and high-dimensional
observations. In this work, we created a testbed to assess this capa-
bility for various learning systems without any guidance. In partic-
ular, the agents must learn/understand the task, the scene, and the
object from offline data without any guidance on what the scene,
object, and task are. We show how to learn the task and scene
end to end from data and how to generalize to unseen and
heavily shifted environments with liquid neural networks, where
modern alternatives fail.

To this end, we performed a series of quadrotor closed-loop
control experiments where pretrained neural architectures were

tested for their ability to generalize OOD. Our experiments includ-
ed the following diverse set of tasks:

1) Fly-to-target tasks. Train on offline expert demonstrations of
flying toward a target in the forest and test online in environments
with drastic scenery changes.

2) Range test. Take a pretrained network from the fly-to-target
task and, without additional training (zero-shot), test how far away
we can place the agents to fly toward the target.

3) Stress test. Add perturbations in the image space and measure
the success rate of agents under added noise.

4) Attention profile of networks. Apply feature saliency compu-
tation to assess the task understanding capabilities of networks via
their attention maps.

5) Target rotation and occlusion. Rotate and occlude the target
object in the environment and measure whether the agents can
complete their flight to the target to measure rotational and occlu-
sion invariance.

6) Hiking with adversaries. Take a pretrained network and use
their attention profile for hiking from one object to another one in
an environment with a drastic change of scenery, environmental
perturbations, and adversarial targets.

7) Triangular (multistep) loop between objects. In a fully new
environment, hop from one target to others placed in a triangular
state and loop from target to target multiple times.

8) Dynamic target tracking. Take a pretrained network and test
how well they can track a moving target in two testing environments
with different scenery, lighting, and wind conditions.

We first describe the baseline models we compared against each
other. We then present our training setup for the fly-to-target task.
Last, we go through our comprehensive testing results in zero-shot
closed-loop control.

Baseline models
We compared six different recurrent neural network architectures,
namely, long short-term memory (LSTM), gated recurrent unit
(GRU)–ordinary differential equation (ODE), ODE–recurrent
neural network (RNN), temporal convolutional network (TCN),
neural circuit policy (NCP), and closed-form continuous-time
(CfC), which are briefly described below. LSTM (37) is a discrete-
time neural network that consists of a memory cell that is controlled
by learnable gates that access, store, clear, and retrieve the informa-
tion contained in the memory. ODE-RNN (38) transforms a vanilla
RNN network, for example, an autoregressive fully connected
network, into a continuous-time model by using the hidden state
of the RNN as the initial state of a neural ODE, for example, an
ODE whose derivative is parameterized by a neural network. The
time continuity enters the model in the form of the simulation
time when solving the ODE with a numerical ODE solver. GRU-
ODE pairs a discrete-time GRU (39) network with a neural ODE,
making it a continuous-time version of a GRU. TCNs (40) model
the temporal structure of an input sequence by performing a one-
dimensional convolution over the time dimension. NCP (18) is a
sparsely wired four-layer architecture built by LTC cells. The archi-
tecture is structurally and semantically inspired by the nervous
system of the Caenorhabditis elegans worm (19). The CfC model
(21) is a sparsely wired four-layer architecture built by numerical
approximation of the closed-form solution of LTCs and is faster
to compute than ODE-based models.
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Fly-to-target task training
The fly-to-target task consists of autonomously identifying a target
of interest and performing the flight controls driving the quadrotor
toward it using the onboard stabilized camera’s sequences of RGB
(red, green and blue) images as the sole input (Fig. 1). We initially
started the quadrotor about 10 m away from the target and required
that the policy guide the drone to within 2 m of the target, with the
target centered in the camera frame. The objective was to learn to
complete this task entirely from an offline dataset of expert demon-
strations. The learned policies were then tested online in a closed
loop within the training distribution and in drastically distinct set-
tings. This experimental protocol allows for the principled assess-
ment of performance and generalization capabilities of liquid
networks compared with modern deep models (38, 41, 42).

Closed-loop (online) testing
All seven tasks were evaluated in closed loop with environments by
running the neural networks onboard the drone. In the following,
we describe our results.
Fly-to-target and zero-shot generalization
In this setting, the quadrotor was placed at a fixed distance from a
target of interest seen in the training data. In our evaluation exper-
iments, we used a red camping chair as the target for collision avoid-
ance purposes; because of its relatively large size, it could occupy an
important portion of the camera frame without the drone having to
get dangerously close. The target was present in the initial field of
view, and its position in the initial input frame was randomized but
balanced over all runs (each network was tested on the same equal
number of right, center, and left starting positions at slightly differ-
ent altitudes). The initial testing protocol was repeated for a number
of testing environments to evaluate the networks’ performance in

OOD settings but maintained a task structure identical to the one
learned from training data. We randomly positioned the quadrotor
at a distance of about 10 m from the target, with the latter in the field
of view of the onboard camera. We launched the closed-loop policy
and observed whether the network could successfully guide the
drone to the target. The test was repeated 40 times for each
network and in each environment. Success was accounted for
when the network was able to both stabilize the drone in a radius
of 2 m and maintain the target in the center of the frame for 10
s. Failure cases were identified when the network generated com-
mands that led to an exit of the target from the range of view
without the possibility of recovery. We also included cases where
the drone failed to reach the target in less than 30 s to account for
rare runs where the network generated commands indefinitely,
maintaining the drone in a stable position with the target in sight
but with no intention of flying toward it.

We tested the policies in four environments we call Training
Woods, Alternative Woods, Urban Lawn, and Urban Patio (Fig. 1,
B and D). The first corresponded to the target in thewoods, respect-
ing roughly the same position and orientation distribution as that of
the training set. We thus evaluated the performance of the networks
on image sequences from the scenery used during training with dif-
ferent lighting conditions and wind profiles. Alternatively, we
moved the chair to a different spot with a different background in
a neighboring part of the woods. This experiment evaluated the net-
works’ generalization performance on input data with scenery dis-
tribution shifts but maintained proximity to sequences seen during
training. To truly evaluate robust task understanding, we subse-
quently set up the zero-shot domain transfer experiments in a dras-
tically dissimilar environment: a piece of lawn on CSAIL MIT’s
campus. Although containing green grass and a few trees, the

Fig. 1. Sample frames of training and test environments. (A) Third-person view of the quadrotor and one of the targets in the Training Woods where data were
collected. (B) Third-person view of the quadrotor during testing on the Urban Patio, with multiple adversary objects dispersed around the target camping chair. (C)
Training data frame samples from the quadrotor onboard camera containing various targets (camping chair, storage box, and RC car from top to bottom) and taken
during different seasons (summer, fall, and winter from left to right). (D) Test data frame samples from the quadrotor onboard camera against each of the four test
backgrounds: Training Woods (top left), Alternative Woods (top right), Urban Lawn (bottom left), and Urban Patio (bottom right).
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landscape was largely different from the woods, as shown in Fig. 1
(A to D). Frames contained buildings, windows, large reflective me-
tallic structures, and the artificial contrast from the geometric
shades they induced. Lighting conditions at different times of day
and varying wind levels added additional perturbations.

We lastly examined the networks’ generalization capabilities in
an OOD environment consisting of a brick patio. In this environ-
ment, the background, including a number of man-made structures
of different shapes, colors, and reflectivity, drastically differed from
the training environment. Moreover, we added an extra layer of
complexity to this experiment by positioning a number of other
chairs in the frame of different colors (including red) and sizes.
This ultimate test, including real-world adversaries, required ro-
bustness in the face of extremely heavy distribution shifts in addi-
tion to proper task understanding to recognize and navigate toward
the correct target. Table 1 shows the success rates of the different
network architectures across the four environments. Both variants
of liquid networks outperformed other models in terms of task
completion. Moreover, we observed that, generally, recurrent net-
works worked better when tested within the same training distribu-
tion, such as the Training Woods and Alternative Woods
environment. Meanwhile, in OOD scenarios, their performance
dropped considerably. However, in such OOD settings, liquid net-
works stood out, with a sparse liquid CfC network having a success
rate of 90% in Urban Lawn and 67.5% in Urban Patio (which con-
tains more natural adversaries).
Range tests
Beyond the extensive testing from the fixed distance of 10 m from
the target (which was roughly the starting position in the training
data), we also performed a range test to explore how the networks
react to an extension of the task unseen in the training data. The
experimental scenery was that of the Training Woods setup present-
ed above but with the drone’s starting positions growing in distance
to the target, thus requiring an increasingly acute task understand-
ing and perception capacity to successfully achieve the objective. We
ran 10 experiments for each of 10-, 20-, and 30-m distance from the
target. At the time of testing, the target lay in the shade, making it
hard to detect against the brighter components in the image, such as
tarmac, sky, and trees. The performance of each of the networks is
summarized in Table 2.

The results of this experiment show strong evidence that liquid
networks have the ability to learn a robust representation of the task
they are given and can generalize well to OOD scenarios where
other models fail. This observation is aligned with recent works
(21) that showed that liquid networks are dynamic causal models
(DCMs) (43) and can learn robust representations for their percep-
tion modules to perform robust decision-making. In particular, CfC
networks managed to fly the drone autonomously from twice and
three times the training distance to their targets from raw visual data
with a success rate of 90 and 20%, respectively. This is in contrast to
an LSTM network that lost the target in every single attempt at both
these distances, leading to a 0% success rate. Only ODE-RNN
managed to achieve a single success at 20 m among the nonliquid
networks, and none reached the target from 30 m.
Stress tests
In addition to the flight experiments with the networks running
online, we performed a series of offline stress tests as another
measure of the robustness of different neural architectures to distri-
bution shifts by perturbing the input frames to the network and ob-
serving changes in network outputs. Ideally, networks should
maintain high performance despite varied environmental condi-
tions. To simulate this domain randomization, we perturbed
images from collected sequences, changing brightness, contrast, sat-
uration, and noise to mimic lighting differences, color variations,
and sensor noise found in real-world testing. We then measured
whether networks substantially changed their control outputs, indi-
cating failure to generalize to new environments, or generated con-
sistent outputs across different perturbations, displaying resilience
to distribution shifts.

To quantify the difference in network outputs, we applied a per-
turbation to the frames of a recorded sequence, fed the original and
perturbed frames to the network, and recorded the original and per-
turbed output velocities generated by the network. We then applied
Forward Euler numerical integration to integrate the velocities into
position trajectories. We thus measured the final distance between
the last point on the two trajectories, recorded this as the perturbed
distance, and repeated this process for different perturbation types
and amplitudes. Figure 2 shows the results of stress testing for noise,
brightness, contrast, and saturation perturbations.

In all four cases, CfCs demonstrated superior robustness com-
pared with their counterparts. They deviated the least from their
nominal trajectories. This observation is consistent with our

Table 1. Closed-loop evaluation of the fly-to-target task for the
trained policies in four testing environments. Quantitative results are
success rates. Higher is better. (N = 40)

Algorithm Environment

Training
Woods

Alt.
Woods

Urban
Lawn

Urban
Patio

LSTM 82.5% 92.5% 62.5% 27.5%

GRU-ODE 50% 17.5% 32.5% 17.5%

ODE-RNN 62.5% 82.5% 17.5% 25%

TCN 7.5% 0% 0% 0%

NCP (ours) 100% 95% 57.5% 52.5%

CfC (ours) 85% 95% 90% 67.5%

Table 2. Range test evaluation of the trained policies in the Training
Woods environment. Quantitative results are success rates. Higher is
better. (N = 10)

Algorithm Initial distance (m)

10 20 30

LSTM 100% 0% 0%

GRU-ODE 70% 0% 0%

ODE-RNN 80% 10% 0%

TCN 5% 0% 0%

NCP (ours) 100% 50% 10%

CfC (ours) 100% 90% 20%
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active testing results, where in OOD scenarios, CfCs stood out in
task completion success rate. Liquid NCPs also showed great resil-
iency to noise, brightness, and contrast perturbations because their
performance was hindered by changes in input pixels’ saturation
level. In this offline setting, LSTMs were also among the most
robust networks after liquid networks. However, their OOD gener-
alization was poor compared with liquid networks.
Attention profile of networks
To assess the task understanding capabilities of all networks, we
computed the attention maps of the networks via the feature sali-
ency computation method called VisualBackProp (44) to the
CNN backbone that precedes each recurrent network.

VisualBackProp associates importance scores to input features
during decision-making. The method has shown promise in real-
world robotics applications where visual inputs are processed by
convolutional filters first. The attention maps corresponding to
the convolutional layers of each network in a test case scenario
are shown in Fig. 3. We observed that the saliency maps of liquid
networks (both NCPs and CfCs) were much more sensitive to the
target from the start of the flight compared with those of
other methods.

We show more comprehensive saliency maps in different scenar-
ios in figs. S1 to S3. We observed that the quality of the attention

Fig. 2. Noise, brightness, contrast, and saturation stress tests. These experiments run both an original image sequence collected by the drone and a perturbed
version through a network, integrate the output velocity commands, and record the final displacement between sequences (lower is better). Bars show the SD
across 10 runs. Trendlines for NCP, LSTM, and CFC are shown with shaded brown, orange, and gray lines, respectively (N = 10). (A) Distances when Gaussian noise
with SD x is added to image frames. (B) Distances when brightness is shifted by x times the maximum pixel value. (C) Distances when the contrast in the image is
multiplied by x. Note that the first data point, 0.5, is actually a reduction in contrast and moves all pixel values toward the mean, whereas the other three data points
increase contrast and move pixel values away from the mean. (D) Distances when saturation (S in HSV colorspace) is multiplied by x. Note the first data point, 0.5, reduces
the saturation of colors in the image, whereas the other three data points increase saturation.
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maps of the convolutional layers drastically improved for all net-
works when data augmentation was used during training.

The attention maps are greatly advantageous because they allow
us to inspect and interpret reasons for a failed or successful deci-
sion-making process by a network under distribution shifts. For in-
stance, we illustrate two OOD test cases in Fig. 3 (B and C), in which
LSTM agents lost their target because of environmental adversaries,
whereas, in very similar cases, liquid networks managed to keep
their focus on the target and complete their tasks. We observed
that learning more robust perception module filters (convolutional
filters) can enhance the generalization of autonomous flight agents.
This is why the robustness of the transformation from convolution-
al heads to the recurrent module (the decision-making compart-
ment) highly depends on the choice of model. Our observations
suggest that liquid networks improve representation learning on
both of these fronts compared with other modern architectures.

Target’s rotation and occlusion
We also conducted a series of experiments pertaining to the appear-
ance of the target. More specifically, we evaluated the trained net-
works on the fly-to-target task in the Urban Lawn setting from the
nominal distance of 10 m but first rotated and then partially occlud-
ed the target (with a black curtain, vertically along the middle).
These experiments tested the robustness and invariance of the
learned task representation that such alterations of the target can
have on different architectures. The results for each of the networks
are presented in Table S5.

We analyzed the results of these experiments relative to the third
column of Table 1 to understand the effect of our modifications on
performance. In the case of rotation, GRU-ODE is the architecture
that suffered the most, managing only one success between both the
90° and 180° tests (2.5%), although it reached the upright target
roughly a third of the time (32.5%) in the same environment. At
both angles, LSTM saw its success rates halved compared with the
upright scenario. Both NCP and ODE-RNN had their success rates
reduced by around 40% on the 90° scenario, whereas CfC only lost
10%. In the 180° case, the latter three networks all maintained per-
formance levels close to those in the initial upright setting. With the
target occluded, only ODE-RNN and NCP managed to maintain
their nominal performance (the latter even slightly improving on
it). GRU-ODE, LSTM, and CfC saw performance reductions of
70, 60, and 30%, respectively.
Zero-shot hiking with adversaries
In this task, the target chairs were placed in the environment in the
disposition depicted in fig. S9. The test was conducted under ex-
tremely bright sunlight, adding substantial perturbation to multiple
network architectures’ performance, with intense glare reflecting off
of the hike targets. Moreover, we placed adversarial objects scattered
in the scene (including a blue bin, a yellow chair, and two red chairs
of different materials and builds). This setup required robustness in
the face of extremely heavy distribution shifts in addition to proper
task understanding to recognize and navigate toward the correct
target at each step. The test was conducted on a cloudy day, with
the target chairs’ colors true to those appearing in the training data.

Table S6 contains the success rate results for this test. TCN and
GRU-ODE models severely struggled to detect targets in this setup
(less than 45% of runs reached the first checkpoint and none attend-
ed to the second). Liquid networks performed best in this scenario,
with a CfC completing 14 of 20 runs of the hiking task with a target
horizon of three. The results of this experiment show strong evi-
dence that liquid networks have the ability to learn a robust repre-
sentation of the task they are given and can generalize well to OOD
scenarios where other models fail or perform poorly (see figs. S7
and S8 for examples of the perturbations and adversaries perceived
by the drone’s input camera). This observation is aligned with
recent works (21) that showed that liquid networks are DCMs
(43) and can learn robust representations for their perception
modules to perform robust decision-making.
Triangular loop between objects
In this task, we demonstrated that our approach can generalize to an
infinite number of hiking steps by setting up the three chairs as ver-
tices of an equilateral triangle of sides equal to 10 m, as illustrated in
Fig. 4. We programmed the quadrotor to turn an angle of 120° to the
right after detection of a checkpoint (instead of flying up like in the
experiments described above) to increase the likelihood of the next
target appearing in the field of view. Using the CfC architecture, we

Fig. 3. Evolution of flight-time networks’ attention maps. (A) A frame illustra-
tion of the attention profile of different networks computed by the VisualBackProp
saliency map computation algorithm (44). The top row shows the input image
frame. The bottom row shows the saliency map. The brighter regions indicate a
greater concentration of the convolutional layer ’s attention. Saliency scores
range between 0 (black) and 1 (white). (B) A flight case study where an LSTM
agent loses its target and gets confused by an adversary. Left to right shows the
progress time. (C) A similar scenario as in (B), in a different OOD testing
environment.
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observed that the network could indefinitely navigate the quadrotor
to new targets (we stopped after four laps, with a total of 12 check-
points reached and detected).
Dynamic target
A useful task in quadrotor autonomous flight is following a moving
target. We thus tested the trained policies’ ability to pilot the drone
in pursuit of a dynamic target. For this task, a figure of eight courses
with six checkpoints was set out (at the extremities and either side of
each loop, consecutive checkpoints being 5 m apart). This design
choice ensured that run lengths were not upper-bounded, tested
both turning directions, and included all possible natural lighting
angles, all while containing the experiment in a constrained space.
The target was moved from one checkpoint to the next, ensuring
that enough reaction time in the camera field of view was granted,
and the number of checkpoints reached was assigned as the score of
a given test run. The experiment was reproduced in two environ-
ments, the Urban Lawn setting and a sports field we call Grass
Pitch (see fig. S10). Testing in the latter environment is subject to
highly challenging conditions of glaring sunlight and strong wind.
In such conditions, most network architectures struggled to even
latch onto the target (get to the first checkpoint and start following
the target). We took this into account in our results by taking aver-
ages only on latched test runs but providing the rates at which each
network initially detected the target.

Hence, table S7 shows that liquid networks consistently achieved
longer trajectories in the Urban Lawn environment, ahead of LSTM
and ODE-RNN architectures. In the Grass Pitch setting, all net-
works apart from LSTM, NCP, and CfC failed to latch onto the
target in all attempts. In this challenging environment, liquid archi-
tectures marginally outperformed LSTM in terms of trajectory
length, although CfC managed to latch onto the target more than
twice as often as LSTM and NCP policies.

DISCUSSION
Choice of models matters for OOD generalization
Our experiments show large inequalities between different RNN ar-
chitectures when performing a diverse range of fly-to-target control
tasks in closed loop and all the more so when required to generalize

in unseen and adversarial environments. Table 1 suggests that only
five of the six networks were capable of reaching the target in the
Training Woods environment on half or more of the attempts.
TCN (7.5%) failed to achieve this threshold even on data from the
training background distribution. These models also performed
poorly in the other testing scenarios, with TCN unable to achieve
a single success in any of the other three environments and GRU-
ODE performing worse in comparison with the Training Woods
scenario with the exception of Urban Lawn case, where it succeeded
about a third of the time (32.5%). These two architectures exhibited
both poor closed-loop performance and generalization and were
thus deemed incapable of understanding and performing the
control task assigned. Among the models performing reasonably
well in both woods scenarios are the ODE-RNNs, with a 62.5%
success rate when the target was in the same position as in the train-
ing data and up to 82.5% with the target placed in a slightly different
position. Although this network seemed to have acquired the capa-
bility to achieve the task in closed loop, it generalized poorly to
unseen environments, with 17.5 and 25% OOD success rates in
the Urban Lawn and Urban Patio experiments.

Other models seemed to perform consistently in the woods, with
success rates of 82.5% for LSTM, 100% for NCP, and 85% for CfC
on the Training Woods test. In the Alternative Woods scenario,
LSTM and both liquid networks (NCPs and CfCs) succeeded in
reaching the target at a high success rate of more than 90%, show-
casing the acquired ability to learn and execute closed-loop tasks
from expert demonstrations.

When asked to generalize performance on the Urban Lawn, the
top performer in this environment is CfC, which highly succeeded
in attending to the target (90% success). On the task of flying to the
target in the presence of natural adversaries and distractions in the
extremely heavy distribution shift setup provided by the Urban
Patio, LSTM succeeded in only 27.5% of the attempts, whereas
both NCP (52.5%) and CfC (67.5%) achieved the best performance.

Furthermore, comprehensive evidence in favor of a crisp advan-
tage for liquid neural networks for closed-loop end-to-end control
learning was amassed through our extensive real-world experimen-
tal results. Our brain-inspired neural networks, and all the more so
our CfC architecture, largely outperformed all other models on all

Fig. 4. Triangular loop between objects. (A) The triangular infinite loop task setup. (B) Time instances of drone views together with their attentionmap at steps 4, 5, and
6 of the infinite loop.
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of the range tests, the rotation and occlusion robustness tests, the
adversarial hiking task, and the dynamic target tracking task.

When all nonliquid networks failed to achieve the task at twice
the nominal distance seen in training, our CfC network achieved a
90% success rate and exhibited successful runs even at three times
the nominal distance from the target (20%). Also, LSTM’s perfor-
mance was more than halved when the chair is rotated or occluded,
whereas the CfC’s success rate was only reduced by 10% for rotation
(with success rates above 80%) and around 30% for occlusion (with
success rates at 60%). Similarly, on the adversarial hiking task, CfC
achieved a success rate more than twice that of its closest nonliquid
competitor, completing 70% of runs, whereas the LSTM model only
reached all three targets on 30% of occasions. Last, LSTM could
track a moving target for an average of 5.8 steps, whereas our CfC
network managed to follow for about 50% longer, averaging 8.8
checkpoints reached. Hence, our brain-inspired networks general-
ized to both new OOD environments and new tasks better than
popular state-of-the-art recurrent neural networks, a crucial charac-
teristic for implementation in real-world applications.

The greater robustness of liquid networks in the face of a data
distribution shift was also confirmed through offline stress
testing. We note that our brain-inspired networks were overall
less prone to drifting from their nominal trajectories in the presence
of artificially introduced image perturbations. Our architectures
surpassed LSTM on noise, brightness, and contrast perturbations,
with the CfC model outperforming all models on each of the per-
turbations introduced.

Understanding liquid network generalization to OOD
settings
We associate the generalization performance of LTCs to two factors.
During the end-to-end training, liquid networks impose an induc-
tive bias on the convolutional filters of the head network, which
enables a more robust feature representation associated with the
task at hand. The saliency maps of the convolutional head networks
are great empirical evidence of this fact. Elsewhere, liquid networks
are DCMs at their cell level (21). The biological priors imposed on
liquid networks form a dynamical system that enables mechanisms
for regulating external and internal interventions, which are the
necessary pillars of causal models (36, 45, 46). This way, during
training, they manage to interact with the training data in a causal
fashion to learn representations for both control and perception. In
all tasks, we provide extensive evidence of their ability to drop irrel-
evant features under heavy distribution shifts and execute the task
picked up on from training data, in this case, flying to the target
regardless of the background profiles and other environmental
variables.

Robustness in perception and control
The generalization of end-to-end imitation agents heavily relies on
the data seen and the augmentation strategies in place to help
encode the task in network weights. We observed that our data aug-
mentation pipeline substantially improves the perception module of
all networks and therefore enables them to obtain stable saliency
maps with attention centered on the target (figs. S1 to S3). The aug-
mentation, however, does not enable a robust execution of the
control task upon change of test environments.

For instance, see the scenarios illustrated in Fig. 3 (B and C), in
which the LSTM’s perception module detects the target but still fails

to navigate the drone. In these cases, the execution of the navigation
task is hindered either by a distraction in the environment or by a
discrepancy between the representations learned in the perception
module and the recurrent module. This discrepancy might be
behind the LSTM agent’s tendency to fly away from the target or
to choose an adversarial target instead of the true one detected by
its perception module in the first place. With liquid networks,
however, we noticed a stronger alignment of the representations
between the recurrent and perception modules because the execu-
tion of the navigation task was more robust than that of
other models.

Causal models in environments with unknown causal
structure
The primary conceptual motivation of our work was not causality in
the abstract; it was instead task understanding, that is, to evaluate
whether a neural model understands the task given from high-di-
mensional unlabeled offline data. Traditional causal methods are
based on known task structure or low-dimensional state spaces
(for example, probabilistic graphical models) (36), whereas we can
incorporate visual input into liquid networks. Therefore, causal
modeling frameworks cannot be used in our high-dimensional
tasks presented here, where the task structure is unknown. From
the causality angle, liquid neural networks are DCMs: This was the-
oretically shown in Vorbach et al. (21).

Through extensive end-to-end closed-loop control testings, we
showed a strong performance demarcation signal in favor of
liquid neural networks against the advanced RNN models. This ca-
pacity to capture causality and contexts and learn reasoned repre-
sentations for control originates from the incorporation of
principled mechanisms for information propagation inspired by
neural models of biological brains into our learning algorithms.

MATERIALS AND METHODS
Liquid networks: Brain-inspired neural models
A bottom-up approach to building brain-inspired neural models is
to examine how neurons interact with each other through synapses
in small biological brains (19, 20). We can identify three mecha-
nisms for information propagation that are abstracted away in the
current building blocks of neural network-based controllers. First,
neural dynamics are typically continuous processes described by
differential equations (DEs) (47). Second, synaptic release is more
than scalar weights: It involves a nonlinear transmission of neuro-
transmitters, the probability of activation of receptors, and the con-
centration of available neurotransmitters, among other
nonlinearities (48). Last, the propagation of information between
neurons is induced by feedback and memory apparatuses. These bi-
ological priors lead to the design of neural and synapse building
blocks at a level of abstraction that is scalable and enriching with
neural information processing attributes. The class of liquid
neural networks LTC accommodates these three criteria (35).

LTCs (Fig. 5) are constructed by the interaction of leaky integra-
tor neural models (49) with the steady-state dynamics of a conduc-
tance-based nonlinear synapse model (47). The model is a
differentiable dynamical system with an input-dependent varying
(for example, liquid) time characteristic. Their outputs are comput-
ed by numerical DE solvers when described by ordinary DEs and by
continuous functions when described in closed-form
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approximations (Fig. 5B) (50). These brain-inspired models are in-
stances of continuous-time (CT) neural networks (35, 41) that can
be trained via gradient descent in modern automatic differentiation
frameworks. Liquid networks exhibit stable and bounded behavior,
yield superior expressivity within the family of CT neural models
(35, 41), and give rise to improved performance on a wide range
of time series prediction tasks compared with advanced, recurrent
neural network models (50). In particular, a sparse network config-
uration composed of fewer than two dozen LTC neurons supplied
with convolutional heads showed great promise in learning, end to
end, to map high-dimensional visual input stream of pixels to
robust control decisions (18). These liquid network instances are
called NCPs, because their four-layered network structure is in-
spired by the neural circuits of the nervous system of the nematode
C. elegans (51), as illustrated in Fig. 5 (C and D). In prior work, these
sparse liquid networks learned how to navigate autonomous simu-
lated aerial (21) and real ground (18) vehicles to their goals much
more robustly than their advanced deep learning counterparts in a
large series of behavioral-cloning experiments within their training
distribution. The state-space representation of an LTC neural
network is determined by the following set of ODEs (35):

dxðtÞ
dt
¼ �

1
τ
þ f ðxðtÞ; IðtÞ; t; θÞ

� �

� xðtÞ

þ f ðxðtÞ; IðtÞ; t; θÞ � A
ð1Þ

Here, x (D × 1)(t) is the hidden state with size D, I (m × 1)(t) is an
input signal, τ(D × 1) is the fixed internal time-constant vector,
A(D × 1) is a bias parameter, and ⊙ is the Hadamard product. Intu-
itively, LTC networks are able to change their equations on the basis
of the input they observe. These networks, either in their ODE form
or in their closed-form representation (50), demonstrate causality
and generalizability in modeling spatiotemporal dynamics com-
pared with their counterparts (21). Their closed-form representa-
tions are called closed-form continuous-time (CfC) models and

are given by (50):

xðtÞ ¼ σð� f ðx; I; θf ÞtÞ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Time-continuous gating

�gðx; I; θgÞ þ ½1 � σð� ½f ðx; I; θf Þ�tÞ�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Time-continuous gating

�hðx; I; θhÞ

ð2Þ

Here, f, g, and h are three neural network heads with a shared
backbone, parameterized by θf, θg, and θh, respectively. I(t) is an ex-
ternal input, and t is the time sampled by input time stamps, as il-
lustrated in Fig. 5.

Throughout, liquid (neural) networks refer to the general cate-
gory of models that are presented either by LTCs or CfCs. CfCs are
closed-form liquid networks, and LTCs are ODE-based liquid
networks.

Liquid networks capture causality
The key to liquid networks’ robust performance under distribution
shifts is their ability to dynamically capture the true cause and effect
of their given task (21). This can be shown analytically because LTCs
are DCMs (21, 43), a framework through which models can account
for internal and external interventions with independent mecha-
nisms. Vorbach et al. (21) theoretically showed that the learning
system described by an LTC network of Eq. 1 can control internal
and external interventions by the network parameters θ and thus
reduces to a DCM (43) as long as f is monotonically increasing,
bounded, and Lipschitz continuous.

DCMs are probabilistic graphical models (43). DCMs differ from
other causal models in that they do not cast around statistical depen-
dencies from data directly; rather, they have dynamic mechanisms,
such as the structure presented in Eq. 2, that enable extracting
cause-and-effect from data (52).

Causal properties of DCMs focus the attention of LTCs on the
task rather than the context of the task, and, for this reason, in
this article, we hypothesize and show that tasks learned in one en-
vironment can be transferred to different environments for LTC
networks where other models fail. More formally, consider a se-
quence of task steps T, a sequence of robot/world configurations

Fig. 5. Liquid neural networks. (A) Schematic demonstration of a fully connected LTC layer (35). The dynamics of a single neuron i is given, where xi(t) represents the
state of the neuron i and τ represents the neuronal time constant. Synapses are given by a nonlinear function, where f (.) represents a sigmoidal nonlinearity and Ai j is a
reversal potential parameter for each synapse from neurons j to i. (B) Schematic representation of a closed-form liquid network (CfC) together with its state equation. This
continuous-time representation consists of two sigmoidal gating mechanisms, σ and 1− σ, with their activity being regulated by the nonlinear neural layer f. f acts as the
LTC for CfCs. These gates control two other nonlinear layers, g and h, to create the state of the system. (C) A schematic representation of an NCP (18). The network
architecture is inspired by the neural circuits of the nematode C. elegans. It is constructed by four sparsely connected LTC layers called sensory neurons, interneurons,
command neurons, and interneurons. (D) CfC. A sparse neural circuit with the same architectural motifs as NCPs, this time with CfC neural dynamics.
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C, and a sequence of imagesV. Visual data are generated following a
schematic graphical model:

T! C! V

We can then explain how causal understanding implies
knowing. Robot states cause images and not vice versa (so when
training on images and control inputs, the network should output
positive velocity when required for the task, not because it has
learned that a sequence of images moving forward implies that
the drone is moving forward). In addition, the drone’s motion is
governed by the task (for example, centering the chair in the
frame) and not by other visual correlations in the data. With the
data augmentation techniques implemented, we show that almost
all networks can handle the former condition. The latter condition,
however, is difficult to achieve for many networks, as extensively
exhibited throughout this report. Our objective in designing fly-
to-target tasks is to create a testbed where neither the concept of
objects nor the task itself is given to the agent. The agents must
learn/understand the task, the scene, and the object from offline
data without any guidance on what the scene, object, and task
are. In this setting, supervised learning of object detection, where
we have to manually label bounding boxes, is out of scope
because we aim explicitly not to use labeled data (bounding
boxes). We show how to learn the task and scene end to end
from data and generalize to unseen and heavily shifted
environments.

To this end, we set out to empirically assess this property in a
large series of in- and out-of-distribution end-to-end navigation

tasks in challenging environments. We built advanced neural
control agents for autonomous drone navigation tasks (fly-to-
target). We explored their generalization capabilities in new envi-
ronments with a drastic change of scenery, weather conditions,
and other natural adversaries.

Training procedure
The following section details the preparation of the data and hyper-
parameters used for training the onboard models.
Data preparation
The training runs were originally collected as long sequences in
which the drone moved between all five targets. Because sequences
of searching for the next target and traveling between them could
lead to ambiguity in the desired drone task, for each training run
of five targets, we spliced the approach to each of the five targets
into five separate training sequences and added these new sliced se-
quences to the training data.
Data augmentation
To increase the networks’ robustness and generalization capabili-
ties, we performed various image augmentations during training.
The first set of augmentations were a random brightness shift
with brightness offsets selected uniformly at random ranging
from 0 to 0.4× of the max pixel brightness, a random contrast
shift with a contrast factor between 0.6 and 1.4, and a random sat-
uration multiplication between 0.6 and 1.4. Parameters for the
aforementioned image augmentations were fixed within a sequence
but randomized between sequences so that two images within the
same training sequence had identical brightness, contrast, and

Fig. 6. End-to-end learning setup. (A) Policies were trained to solve the following task: Using only images taken from an onboard camera, navigate the drone from its
starting location to a target 10 m away, keeping the object in the frame throughout. (B) One goal of the work is to explore the generalization capability of various neural
architectures by adapting the task to previously unseen environments. (C) Another goal is to understand the causal mechanisms underlying different networks’ behaviors
while completing the task, by visualizing networks’ input saliency maps. (D) The training process started by hand-collecting human expert trajectories and recording
camera observations and human expert actions. (E) To further convey the task, we then generated synthetic sequence by taking images collected during human flights
and repeatedly cropping them, creating the appearance of a video sequence in which the drone flies up to the target and centers it in the frame. (F) The networks were
trained offline on the collected expert sequences using a supervised behavior cloningMSE loss. (G) We then deployed trained networks on the drone in online testing and
observed task performance under heavy distributional shifts, varying lighting, starting location, wind, background setting, and more.
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saturation offsets, but two images in different sequences had differ-
ent offsets. Last, each image had Gaussian random noise with a
mean of 0 and an SD of 0.05 added.

In addition, to better convey the task, we performed closed-loop
augmentation by generating synthetic image and control sequences
and adding them to the training set. To generate these sequences, we
took a single image with the target present and repeatedly cropped
the image. Over the duration of the synthetic sequence, we moved
the center of the crop from the edge of the image to the center of the
target, causing the target to appear to move from the edge of the
frame to the center. In addition, we shrank the size of the
cropped window and upscaled all of the cropped images to the
same size, causing the target to appear to grow bigger. Together,
these image procedures simulated moving the drone to center the
target while moving closer to the target to make it occupy more of
the drone’s view. We then inserted still frames of the central target
with a commanded velocity of zero for 20 to 35% of the total se-
quence length. This pause sought to teach the drone to pause
after centering the target. Algorithm S1 describes the synthetic se-
quence generation steps, whereas Fig. 6E visualizes the successive
crops calculated by the algorithm and their resulting output frames.

To label synthetic sequences with velocity controls, we generated
yaw commands equal to the horizontal distance in pixels between
the target and the center of the frame times 0.01 and likewise gen-
erated throttle (up-down) commands equal to the vertical target
offset times 0.01. We generated pitch (forward-backward) com-
mands in the synthetic data proportional to the size of the
cropped window. This technique increased the size of the training
set by more than 2.5×, using a relatively small sample of images in
which the target was present.

The initial position of the target within the frame was chosen
randomly such that the x (horizontal) offset of the chair was
between 10 and 70 pixels, and the y offset was between 5 and 40
pixels. (The size of the input images was 144 pixels by 256 pixels.]
Synthetic sequences were later balanced such that the mean control
signal across all generated data points was zero for the throttle and
yaw channels. The sequence length was also randomized to be
between 120 and 250 frames to encourage robustness to external
forces or varying update frequencies. Note that although we used
these augmented sequences for training, we did not include the
closed-loop synthetic sequences in the validation set.
Hyperparameter tuning/network architectures
For each network architecture, we used tree-structured Parzen esti-
mators (TPEs) (53, 54) for tuning hyperparameters such as learning
rate (LR), LR decay rate, and model-specific hyperparameters such
as backbone unit count or connection seed that would maximize
performance. The set of parameters leading to the lowest train +
validation loss over the 40 episodes was selected for the final
tested model.

TPE, a sequential model–based optimization algorithm, was re-
sponsible for sampling new hyperparameters to try across different
episodes. After three trials, episodes with a higher median training
+ validation loss on the 10th epoch were pruned early and did not
run to completion. Hyperparameter optimization was implemented
using the Optuna library. Not all parameters were found via hyper-
parameter tuning; some parameters were hand-selected to shrink
the dimensionality of the search space. The best hyperparameters
found for each model architecture and used during testing are
listed below in table S1.

For each chosen hyperparameter configuration, the number of
trainable parameters in the corresponding model for every neural
architecture is listed in table S3. Each network tested was prefixed
by a simple CNN backbone for processing incoming images. The
128-dimensional CNN features were then fed to the recurrent
unit that predicted control outputs. The shared CNN architecture
is pictured in table S4.
Fine-tuning
To simultaneously learn the geospatial constructs present in the
long, uncut sequences and the task-focused controls present in
the cut and synthetic sequences, we fine-tuned a model trained
on the long sequences with sequences featuring only one target.
The starting checkpoint was trained on the original uncut sequenc-
es, all sliced sequences, and synthetic data corresponding to all
targets. We then regenerated synthetic data with new randomized
offsets for one target and fine-tuned on sliced sequences containing
the one target and new synthetic augmented sequences that featured
that target. Training parameters are listed in table S2.

Platform setup
We evaluated the proposed RNN architectures on a commercially
available quadcopter with custom software running onboard. The
system featured a forward-facing gimbal-mounted camera and a
GPU to run onboard inference. We used Robot Operating System
(ROS) (55) to handle communication between the RNN inference
code and the lower-level drone flight controller.
Drone hardware
A DJI M300 RTK quadcopter was used for data collection and eval-
uation of policy performance. The M300 is an enterprise-grade
drone that can be flown by manual control in its default configura-
tion. It also interfaces with the DJI Manifold 2 companion comput-
er, enabling programmatic control of the drone. The companion
computer included an NVIDIA Jetson TX2, which has a CPU
and GPU. The DJI Onboard SDK and its associated ROS wrapper
provided an interface for giving the drone’s low-level flight control-
ler desired linear and angular velocity set points. The flight control-
ler is a black box not modifiable by the end user, but it controls the
four-rotor speeds to track the velocities specified by the TX2
computer.

A Zenmuse Z30 camera and gimbal were mounted on the under-
side of the drone, pointed forward. The gimbal compensated for the
drone’s current orientation such that the roll or pitch of the drone
did not result in roll or pitch of the camera image. The gimbal fol-
lowed the drone’s current yaw such that the camera was always
pointed forward. Images from the camerawere available to the com-
panion computer via the SDK.
System design
We implemented our software control system in ROS. A ROS node
received images from the onboard camera, ran inference with the
RNN controller to compute the new desired control on the basis
of the current image, and sent the generated control outputs to
the low-level flight controller using the onboard ROS SDK. The
node has two threads: One is responsible for processing incoming
images, and the other is responsible for running inference on the
images and sending the resulting control signals to the flight con-
troller. The TX2’s GPU ran the RNN inference with GPU-acceler-
ated Tensorflow 2.3.x. A depiction of the system design can be
found in fig. S2.
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Analysis methodology
VisualBackprop. A primary goal of this article was to analyze the

task understanding of the policy networks. We visually analyzed the
task understanding of a policy network by examining how the
policy’s CNN encodes and extracts features from an input. Each
of the policies shares the same CNN head architecture, so differenc-
es in CNN weights between policies are representative of what the
downstream architecture learns to extract from the environment.

Using the VisualBackProp algorithm, we used observations of
the environment to compute attention mappings from the CNN
head of the model architectures. The procedure, shown in Algo-
rithm S4, is as follows: As input was passed through the CNN,
each of the feature maps was averaged across the channels and
saved. Starting from the final layer, the averaged feature map was
deconvolved to the size of the previous layer ’s average feature
map. The deconvolved feature map was multiplied by the previous
layer’s average feature map. This product was then passed to the
previous layer. The deconvolution and multiplication were repeated
iteratively, updating at each step until it reached the first layer. The
result was a feature map displaying locations in the source image to
which the model attends the most attention. These maps are the sa-
liency maps (56).
Stress tests. For the stress tests in Fig. 2, we averaged the trajectory

deviations for 10 runs recorded by the networks running in closed
loop. Five runs were taken from the training environment, and five
were taken from the urban test task. The perturbed runs were col-
lected across a variety of different network types, including both
liquid networks and conventional networks.

We only fed 40% of the frames in each run before measuring the
final distance, because the longer the sequence, the more the trajec-
tories diverge. Because the input images fed to the model were fixed,
we could not model the change in perspective caused by the diverg-
ing viewpoints, and any estimates of future position became more
inaccurate. To limit the effect of the offline frame generation while
still maintaining enough frames to yield statistically significant
results, we chose to only keep the first 40% of each sequence.
Attention-based hiking task setup. We designed a controller that

relies on the attention maps perceived by the convolutional layers of
each pretrained network architecture to trigger a hop between two
targets. We observed that for networks with some understanding of
the task when the target of interest is close enough, the saliency map
displays a bright patch corresponding to the position of the object in
the input image. We thus used an area occupancy criterion to
trigger a switch of the target. While the network was piloting the
quadrotor, we analyzed each saliency frame, masking pixels under
a brightness threshold and detecting the most salient and largest
connected patch. When the best candidate patch surpassed a fixed
threshold in pixel area (corresponding to the drone being 2 m away
from the camping chair), we considered the target reached and trig-
gered an override of the network commands with a fixed-time
throttle command to fly the quadrotor upward 1.6 m. This
ensured that the current target left the field of view and that the
network had access to images of the next segment of the scene.
Control was given back to the network until a new target was detect-
ed and so on. This control protocol (depicted in fig. S3) can, by
design, attend to an indefinite number of checkpoints, provided
that the network sees and is capable of navigating to the next target.

Statistical analysis
The quantitative results of the paper presented in Tables 1 and 2 and
table S4 to S7 all supply the number of active tests performed,N, and
report the success rate of models in each scenario in percentages. On
all compartments of Fig. 2, each point represents the mean across 10
runs, whereas the vertical bar on each point represents the SD cor-
responding to the data entry.
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