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Abstract

Semantic segmentation enables many appealing real-
world applications, such as computational photography,
autonomous driving, etc. However, the vast computa-
tional cost makes deploying state-of-the-art semantic seg-
mentation models on edge devices with limited hardware
resources difficult.  This work presents EfficientViT, a
new family of semantic segmentation models with a novel
lightweight multi-scale attention for on-device semantic
segmentation. Unlike prior semantic segmentation mod-
els that rely on heavy self-attention, hardware-inefficient
large-kernel convolution, or complicated topology struc-
ture to obtain good performances, our lightweight multi-
scale attention achieves a global receptive field and multi-
scale learning (two critical features for semantic segmen-
tation models) with only lightweight and hardware-efficient
operations. As such, EfficientViT delivers remarkable per-
formance gains over previous state-of-the-art semantic seg-
mentation models across popular benchmark datasets with
significant speedup on the mobile platform. Without per-
formance loss on Cityscapes, our EfficientViT provides up
to 15x and 9.3 x mobile latency reduction over SegFormer
and SegNeXt, respectively. Maintaining the same mobile
latency, EfficientViT provides +7.4 mloU gain on ADE20K
over SegNeXt.

1. Introduction

Semantic segmentation is a fundamental task in com-
puter vision, which aims to assign a class label to each pixel
in the input image. Semantic segmentation has broad appli-
cations in real-world scenarios, including autonomous driv-
ing, medical image processing, computational photography,
etc. Therefore, deploying state-of-the-art (SOTA) semantic
segmentation models on edge devices is in great demand to
benefit a wide range of users.

However, there is a large gap between the computational
cost required by SOTA semantic segmentation models and

the limited resources of edge devices. It makes deploying
these models on edge devices impractical. In particular,
semantic segmentation is a dense prediction task requiring
high-resolution images and strong context information ex-
traction ability to work well [1, 36, 47, 52, 48, 42]. There-
fore, directly porting efficient model architecture from im-
age classification is unsuitable for semantic segmentation.

This work introduces EfficientViT, a new family of
models for on-device semantic segmentation. The core
of EfficientViT is a novel lightweight multi-scale attention
module that enables a global receptive field and multi-scale
learning with hardware-efficient operations. Our module
is motivated by prior SOTA semantic segmentation mod-
els. They demonstrate that the multi-scale learning [47, 52],
and global receptive field [45] play a critical role in im-
proving the performances for semantic segmentation. How-
ever, they do not consider hardware efficiency when design-
ing their models, which is essential for on-device seman-
tic segmentation. For example, SegFormer [45] introduces
self-attention into the backbone to have a global receptive
field. But its computational complexity is quadratic to the
input resolution, making it unable to handle high-resolution
images efficiently. SegNeXt [17] proposes a multi-branch
module with large-kernel convolutions (kernel size up to
21) to enable a large receptive field and multi-scale learn-
ing. However, large-kernel convolution requires excep-
tional support on hardware to achieve good efficiency [ 5],
which is usually not available on edge devices.

Hence, the design principle of our module is to en-
able these two critical features while avoiding hardware-
inefficient operations. Specifically, to have a global re-
ceptive field, we propose substituting the inefficient self-
attention with lightweight ReLU-based global attention
[26]. By leveraging the associative property of matrix
multiplication, ReLU-based global attention can reduce the
computational complexity from quadratic to linear while
preserving functionality. In addition, it avoids hardware-
inefficient operations like softmax, making it more suitable
for on-device semantic segmentation (Figure 3).

Furthermore, we propose a novel lightweight multi-scale
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Figure 1: Latency vs. Performance. All performance results are obtained with the single model and single-scale inference.
The latency results are obtained on the Qualcomm Snapdragon 8Genl CPU using Tensorflow-Lite. Compared with state-of-
the-art (SOTA) segmentation models, EfficientViT achieves a remarkable boost in speed while providing the same or higher
performances on Cityscapes and ADE20K. In addition, EfficientViT also shows strong performances in image classification,
achieving a 7.9x latency reduction over EfficientNet without accuracy loss on ImageNet.

Table 1: Desirable Features for On-device Semantic Segmentation. ‘Linear computational complexity’ means the com-
putational cost grows linearly as the input resolution increases.

Features | SegFormer [45] HRFormer [49] SegNeXt[17] EfficientViT
Global receptive field v v
Multi-scale learning v v v
Linear computational complexity v v v

v

Hardware efficiency

ceptive field and multi-scale learning while maintaining
good efficiency on edge devices.

attention module based on the ReLU-based global attention.
Specifically, we aggregate nearby tokens with small-kernel
convolutions to generate multi-scale tokens and perform
ReLU-based global attention on multi-scale tokens (Fig-
ure 2) to combine the global receptive field with multi-scale
learning. We summarize the comparison between our work * On popular semantic segmentation benchmark datasets
and prior SOTA semantic segmentation models in Table 1. and ImageNet, our model demonstrates remarkable
We can see that our model is more suitable for on-device speedup on mobile over prior SOTA semantic segmen-
semantic segmentation than previous models. tation models.

We extensively evaluate EfficientViT on popular seman-
tic segmentation benchmark datasets, including Cityscapes
[12] and ADE20K [53]. EfficientViT provides significant
performance boosts over prior SOTA semantic segmenta-
tion models. More importantly, EfficientViT does not in-
volve hardware-inefficient operations, so our FLOPs reduc-
tion can easily translate to latency reduction on mobile de-
vices (Figure 1). On Qualcomm Snapdragon 8Genl CPU,
EfficientViT executes 5.8 x faster than SegNeXt [17] while
reaching higher mloU on Cityscapes and 7.9 faster than
EfficientNet [39] without accuracy loss on ImageNet. We
summarize our contributions as follows:

* We design EfficientViT, a new family of models, based on
the proposed lightweight multi-scale attention module.

2. Method

This section first introduces lightweight Multi-Scale At-
tention (MSA). Unlike prior works, our lightweight MSA
module simultaneously achieves a global receptive field
and multi-scale learning with only hardware-efficient op-
erations. Then we present a new family of models named
EfficientViT based on the proposed MSA module for on-
device semantic segmentation.

2.1. Lightweight Multi-Scale Attention

Our lightweight MSA module balances two crucial as-
pects for on-device semantic segmentation, i.e., perfor-
mance and efficiency. Specifically, a global receptive field

* We introduce a novel lightweight multi-scale attention for
on-device semantic segmentation. It achieves a global re-
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Figure 2: Illustration of EfficientViT’s Building Block (left) and the Proposed Lightweight Multi-Scale Attention
(right). Left: A building block of EfficientViT consists of a lightweight MSA module and an MBConv. The lightweight
MSA module is responsible for capturing context information, while the MBConv is for capturing local information. Right:
After getting Q/K/V tokens via the linear projection layer, we propose to generate multi-scale tokens by aggregating nearby
tokens via lightweight small-kernel convolutions. ReLU-based global attention is applied to multi-scale tokens, and the
outputs are concatenated and fed to the final linear projection layer for feature fusing.
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Figure 3: ReLU-based linear attention is 3.3-4.5x faster
than softmax attention with similar computation, thanks to
removing hardware-unfriendly operations (e.g., softmax).
Latency is measured on Qualcomm Snapdragon 855 CPU
with TensorFlow-Lite.

and multi-scale learning are essential from the performance
perspective. Previous SOTA segmentation models provide
strong performances by enabling these features but fail to
provide good efficiency. Our module tackles this issue by
trading slight capacity loss for significant efficiency im-
provements.

An illustration of the proposed lightweight MSA mod-
ule is provided in Figure 2 (right). In particular, we pro-
pose to use lightweight ReL.U-based attention [26] to enable
the global receptive field instead of the heavy self-attention
[41]. While ReLU-based attention [26] and other linear at-

tention modules [2, |1, 38, 43] has been explored in other
domains, it has never been applied to the semantic segmen-
tation community. To the best of our knowledge, we are the
first work demonstrating ReLU-based attention’s effective-
ness in semantic segmentation. In addition, our work intro-
duces novel designs (lightweight MSA module) to enhance
the capacity, making it much more powerful in semantic
segmentation.

Enabling Global Receptive Field with Lightweight
ReLU-based Attention. Given input z € RV >/ the gen-
eralized form of self-attention can be written as:

Sim(Qi, K)

0; = - Vi, n
;z]ﬁl Sim(Qi, K;)
where Q@ = a2Wq, K = zWg, V = 2Wy and

Wo /Wi /Wy € RI*? is the learnable linear projection
matrix. O; represents the i-th row of matrix O. Sim(-,-) is
the similarity function. When using the similarity function
Sim(Q,K) = exp(Q—;%T), Eq. (1) becomes the original
self-attention [41].

Apart from exp( %), we can use other similarity func-
tions. In this work, we use ReLU-based global attention
[26] to achieve both the global receptive field and linear
computational complexity. In ReL.U-based global attention,

the similarity function is defined as
Sim(Q, K) = ReLU(Q)ReLU(K)". )

With Sim(Q, K) = ReLU(Q)ReLU(K)T, Eq. (1) can
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Figure 4: Macro Architecture of EfficientViT. We adopt the standard backbone-head/encoder-decoder design. In the back-
bone, we insert our lightweight MSA modules in Stages 3 and 4. Following the common practice, we feed the features from
the last three stages (P2, P3, and P4) to the head. We use addition to fuse these features for simplicity and efficiency. As
we already have lightweight MSA modules in the backbone, we adopt a simple head design that consists of several MBConv

blocks and output layers.
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Figure 5: Illustration of the Aggregation Process for
Generating Multi-Scale Tokens. The information aggre-
gation is done independently for each Q, K, and V in each
head. ‘d’ denotes the dimension of each token. The typical
value of d is 32.

be rewritten as:
N
0i = Z
- ZFI(ReLU(Qi)ReLU(Kj)T)Vj
 ReLU(Q:) XN, ReLU(K;)T

ReLU Qi)ReLU(K)T
¥ ReLU(Q:)ReLU(K;)T *

Then, we can leverage the associative property of matrix
multiplication to reduce the computational complexity and
memory footprint from quadratic to linear without changing
the functionality:

S| [ReLU(Qu)ReLU(K;)TV;
" ReLU(Q) XV, ReLU(K,)™

>, ReLU(Q))[(ReLU(K;) V)]
~ ReLU(Q:) X, ReLU(K;)T

ReLU(Q:)(3-0L, ReLU(K )TVJ)
~ ReLU(Q:)(X), ReLU(K)T)

As shown in Eq. (3), we only need to compute
(30, ReLU(K;)TV;) € R and (31| ReLU(K;)T)
€ Rdx ! once, then can reuse them for each query, thereby
only requires O(N') computational cost and O (N ) memory.

3)

Another key merit of ReLU-based global attention is that
it does not involve hardware-unfriendly operations like soft-
max, making it more efficient on hardware. For example,
Figure 3 shows the latency comparison between softmax at-
tention and ReLU-based linear attention. With similar com-
putation, ReLU-based linear attention is significantly faster
than softmax attention on mobile.

Generate Multi-Scale Tokens. ReLU-based attention
alone has limited model capacity. To enhance ReLU-based
global attention with multi-scale learning ability, we pro-
pose to aggregate the information from nearby Q/K/V to-
kens to get multi-scale tokens. The aggregation process is
illustrated in Figure 5. This information aggregation pro-
cess is independent for each Q, K, and V in each head. We
only use small-kernel convolutions for information aggre-
gation to avoid hurting hardware efficiency.

In the practical implementation, independently executing
these aggregation operations is inefficient on GPU. There-
fore, we take advantage of the infrastructure of group con-
volution in modern deep learning frameworks to reduce the
number of total operations. Specifically, all DWConvs are
fused into a single DWConv while all 1x1 Convs are com-
bined into a single 1x1 group convolution (Figure 2 right)
where the number of groups is 3 x #heads and the number
of channels in each group is d.

After getting multi-scale tokens, we perform global at-
tention upon them to extract multi-scale global features.
Finally, we concatenate the features from different scales
along the head dimension and feed them to the final linear
projection layer to fuse the features.

2.2. EfficientViT Architecture

We build a new family of models based on the pro-
posed lightweight MSA module. The core building block
(denoted as ‘EfficientViT Module’) is illustrated in Fig-



Table 2: Detailed Architecture Configurations of Different EfficientViT Variants. We build a series of models to fit
different efficiency constraints. ‘C’ denotes the number of channels. ‘L’ denotes the number of blocks. ‘H’ is the height of

the feature map, and ‘W’ is the width of the feature map.

Variants | Feature Map Shape | EfficientViT-BO | EfficientViT-B1 | EfficientViT-B2 | EfficientViT-B3
InputStem | CxZx¥ | C=8L=1 | C=16L=1 | C=24L=1 | C=32,L=1
Stagel | CxZx%¥ | C=16L=2 | C=32,L=2 | C=48,L=3 | C=64L=4
Stage2 | CxZx¥ | C=32,L=2 | C=64L=3 | C=96,L=4 | C=128L=6
Stage3 | Cxfx1 | C=64,L=2 | C=128L=3 | C=192,L=4 | C=256,L=6
Staged | CxZ x| C=128,L=2 | C=256,L=4 | C=384,L=6 | C=512,L=9
Head | CxZx¥ | €c=32,L=1 | C=64L=3 | C=9,L=3 | C=128L=3

ure 2 (left). Specifically, an EfficientViT module comprises
a lightweight MSA module and an MBConv [37]. The
lightweight MSA module is for context information extrac-
tion, while the MBConv is for local information extraction.

The macro architecture of EfficientViT is demonstrated
in Figure 4. We use the standard backbone-head/encoder-
decoder architecture design.

* Backbone. The backbone of EfficientViT also follows
the standard design, which consists of the input stem and
four stages with gradually decreased feature map size and
gradually increased channel number. We insert the Effi-
cientViT module in Stages 3 and 4. For downsampling,
we use an MBConv with stride 2.

e Head. P2, P3, and P4 denote the outputs of Stages 2, 3,
and 4, forming a pyramid of feature maps. For simplic-
ity and efficiency, we use 1x1 convolution and standard
upsampling operation (e.g., bilinear/bicubic upsampling)
to match their spatial and channel size and fuse them via
addition. Since our backbone already has a strong con-
text information extraction capacity, we adopt a simple
head design that comprises several MBConv blocks and
the output layers (i.e., prediction and upsample). In the
experiments, we empirically find this simple head design
is sufficient for achieving SOTA performances thanks to
our lightweight MSA module.

In addition to semantic segmentation, our model can be
applied to other vision tasks, such as image classification,
by combining the backbone with task-specific heads.

Following the same macro architecture, we design a se-
ries of models with different sizes to satisfy various effi-
ciency constraints. The detailed configurations are demon-
strated in Table 2. We name these models as EfficientViT-
BO, EfficientViT-B1, EfficientViT-B2, and EfficientViT-B3,
respectively.

Table 3: Ablation Study on Two Key Components of
Our Lightweight MSA Module. The mloU and MACs are
measured on Cityscapes with 1024x2048 input resolution.
We rescale the width of the models so that they have the
same MACs. Multi-scale learning and the global receptive
field are essential for obtaining good semantic segmentation
performance.

Components | mloU 1 | Params | MACs |
Multi-scale  Global att. |
68.1 0.7M 4.4G
v 72.3 0.7M 4.4G
v 72.2 0.7M 4.4G
v v 74.5 0.7M 4.4G

3. Experiments
3.1. Setups

Datasets. We evaluate the effectiveness of EfficientViT
on two representative semantic segmentation datasets, in-
cluding Cityscapes [12] and ADE20K [53]. Cityscapes is
an autonomous driving dataset that mainly focuses on ur-
ban scenes. It contains 5,000 fine-annotated high-resolution
(1024x2048) images with 19 classes divided into three sub-
sets of size 2,975/500/1,525 for training/validation/testing.
ADE20K is a scene-parsing dataset with 150 classes. It
contains 20,210/2,000/3,352 images for training, validation,
and testing, respectively.

Apart from Cityscapes and ADE20K, we also study the
effectiveness of EfficientViT for image classification using
the ImageNet dataset [14].

Latency Measurement. We measure the latency of the
models on Qualcomm Snapdragon 8Genl CPU with
Tensorflow-Lite!, batch size 1 and fp32.

lht tps://www.tensorflow.org/lite
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Figure 6: MACs vs. Performance. EfficientViT provides a better trade-off between MACs and performance than SOTA se-
mantic segmentation and image classification models. On Cityscapes, EfficientViT provides 13 x and 2.4 x MACs reduction
than SegFormer and SegNeXt, respectively, while achieving the same or higher performances. On ImageNet, EfficientViT
achieves 2.9x MACs reduction than EfficientNet without accuracy loss.

Table 4: Backbone Performance of EfficientViT on ImageNet Classification.
224x224. While EfficientViT is mainly designed for semantic segmentation, it also works well on ImageNet classifica-
tion. With 6.5G MAC:s, EfficientViT-B3 achieves 84.2 topl ImageNet accuracy, surpassing EfficientNet-B6 while reducing
the MACs by 2.9x and being 7.9x faster on mobile.

Implementation Details.
ing Pytorch [

‘1224’ means the input resolution is

Models | Topl Acc 1 Top5 Acc 1 | Params | MACs | | Mobile Latency |  Speedup T
EfficientNet-B1 [39] 79.1 94.4 7.8M 0.70G 87ms 1.0x
EfficientNetV2-BO [40] 78.7 - 7.1M 0.72G 53ms 1.6x
EfficientViT-B1 (r224) 79.4 94.3 9.IM 0.52G 19ms 4.6x
EfficientNet-B2 [39] 80.1 94.9 9.2M 1.0G 118ms 1.0x
EfficientNetV2-B1 [40] 79.8 - 8.1IM 1.2G 85ms 1.4x
EfficientViT-B1 (r288) 80.4 95.0 9.IM 0.86G 31ms 3.8x
Swin-T [29] 81.3 - 29M 4.5G - -
ConvNeXt-T [30] 82.1 - 29M 4.5G 356ms 1.0x
EfficientNet-B3 [39] 81.6 95.7 12M 1.8G 208ms 1.7x
EfficientNetV2-B3 [40] 82.1 - 14M 3.0G 201ms 1.8x
CoAtNet-0 [13] 81.6 - 25M 4.2G 175ms 2.0x
EfficientViT-B2 (r256) 82.7 96.1 24M 2.1G 72ms 4.9x
Swin-S [29] 83.0 - 50M 8.7G - -
ConvNeXt-S [30] 83.1 - 50M 8.7G 622ms 1.0x
EfficientNet-B4 [39] 82.9 96.4 19M 4.2G 464ms 1.3x
CoAtNet-1 [13] 83.3 - 42M 8.4G 332ms 1.9x
EfficientViT-B3 (r224) 83.5 96.4 49M 4.0G 140ms 4.4x
Swin-B [29] 83.5 - 88M 15G - -
EfficientNet-B6 [39] 84.0 96.8 43M 19G 1804ms 1.0x
ConvNeXt-B [30] 83.8 - 89OM 15G 1025ms 1.8x
CoAtNet-2 [13] 84.1 - 75M 16G 600ms 3.0x
EfficientNetV2-S [40] 83.9 - 22M 8.8G 509ms 3.5x
EfficientViT-B3 (r288) 84.2 96.7 49M 6.5G 228ms 7.9x

] and train them on GPUs.
AdamW optimizer with cosine learning rate decay for train-
ing our models. For lightweight multi-scale attention, we

We implement our models us-
We use the

use a two-branch design for the best trade-off between per-
formance and efficiency, where 5x5 nearby tokens are ag-
gregated to generate multi-scale tokens.

For semantic segmentation experiments, we use the



Table 5: Comparison with SOTA Semantic Segmentation Models on Cityscapes. ‘r1024x2048 denotes the input res-
olution is 1024x2048. Models with similar mIoU are grouped for efficiency comparison. Compared with SegNeXt-T,
EfficientViT-B1 achieves 2.7x MACs reduction, 9.3x latency reduction, and 0.3 higher mIoU. Compared with SegFormer-B1,
EfficientViT-B1 obtains 13x MACs saving, 15x measured speedup, and 1.6 higher mloU.

Models | mloU 1 | Params | MACs | | Mobile Latency |  Speedup 1
DeepLabV3plus-Mbv2 [7] 75.2 15M 555G - -
PSPNet-Mbv2 [52] 70.2 14M 423G - -
FCN-Mbv2 [31] 61.5 9.8M 317G - -
SegFormer-B0 (r768) [45] 75.3 3.8M 52G 2.8s 1.0x
EfficientViT-B0 (r960x1920) 75.5 0.7M 3.9G 0.20s 14x
HRFormer-S [49] 80.0 14M 836G - -
SegFormer-B1 [45] 78.5 14M 244G 12s 1.0x
SegNeXt-T [17] 79.8 4.3M 51G 7.6s 1.6x
EfficientViT-B1 (r896x1792) 80.1 4.8M 19G 0.82s 15x
HRFormer-B [49] 81.9 56M 2224G - -
SegFormer-B3 [45] 81.7 47M 963G - -
SegNeXt-S [17] 81.3 14M 125G 18s 1.0x
EfficientViT-B2 (r1024x2048) 82.1 15M 74G 3.1s 5.8x
SegFormer-B5 [45] 82.4 85M 1460G - -
SegNeXt-L [17] 83.2 49M 578G - -
EfficientViT-B3 (r1184x2368) 83.2 40M 240G 10s -

mean Intersection over Union (mloU) as our evaluation
metric. The backbone is initialized with weights pretrained
on ImageNet and the head is initialized randomly, following
the common practice. Common data augmentation strate-
gies such as random scaling, random horizontal flip, and
random cropping are employed following prior works.

3.2. Ablation Study

Effectiveness of Our Lightweight MSA Module. We
conduct ablation study experiments on Cityscapes to study
the effectiveness of two key design components of our
lightweight MSA module, i.e., multi-scale learning and
global attention. To eliminate the impact of pre-training,
we train all models from random initialization. In addition,
we rescale the width of the models so that they have the
same #MACs. The results are summarized in Table 3. We
can see that removing either global attention or multi-scale
learning will significantly hurt the performances. It shows
that all of them are essential for achieving a better trade-off
between performance and efficiency.

Backbone Performance on ImageNet. To understand
the effectiveness of EfficientViT’s backbone in image clas-
sification, we train our models on ImageNet following the
standard training strategy (300 epochs with random initial-
ization, no knowledge distillation). We summarize the re-
sults and compare our models with SOTA image classifica-
tion models in Table 4.

Though EfficientViT is designed for semantic segmenta-
tion, it achieves highly competitive performances on Im-
ageNet. In particular, EfficientViT-B3 obtains 84.2 topl
accuracy on ImageNet, providing +0.2 accuracy gain over
EfficientNet-B6 and 7.9x speedup.

3.3. Main Results

Cityscapes. Table 5 reports the comparison between Ef-
ficientViT and SOTA semantic segmentation models on
Cityscapes. EfficientViT achieves remarkable efficiency
improvements over prior SOTA semantic segmentation
models without sacrificing performances. Specifically,
compared with SegFormer, EfficientViT obtains up to 13x
MAC:s saving and up to 15x latency reduction with higher
mloU. Compared with SegNeXt, EfficientViT provides up
to 2.7x MACs reduction and 9.3x speedup on mobile while
maintaining higher mIoU.

Having similar computational cost, EfficientViT yields
significant performance gains over previous SOTA models.
For example, EfficientViT-B3 yields +4.7 mloU gain over
SegFormer-B1 with similar MACs.

ADE20K. Table 6 summarizes the comparison between
EfficientViT and SOTA semantic segmentation models on
ADE20K. Similar to Cityscapes, we can see that Ef-
ficientViT also achieves significant efficiency improve-
ments on ADE20K. For example, with +0.5 mloU gain,
EfficientViT-B1 provides 5.9x MACs reduction and 6.5x la-
tency reduction than SegFormer-B1. With +0.8 mloU gain,



Table 6: Comparison with SOTA Semantic Segmentation Models on ADE20K. Compared with SegNeXt-S, EfficientViT-
B2 provides a 5.2x speedup and 0.8 mloU gain. Compared with SegFormer-B1, EfficientViT-B1 achieves 0.5 higher mloU

with a 6.5x speedup.

Models | mloU 1 | Params | MACs | | Mobile Latency |  Speedup T
SegFormer-B1 [45] 42.2 14M 16G 0.65s 1.0x
SegNeXt-T [17] 41.1 4.3M 6.6G 0.61s 1.1x
EfficientViT-B1 (r480) 42.7 4.8M 2.7G 0.10s 6.5x
HRFormer-S [49] 44.0 14M 110G - -
SegNeXt-S [17] 443 14M 16G 1.1s 1.0x
EfficientViT-B2 (r416) 45.1 15M 6.0G 0.21s 5.2x
Mask2Former [9] 47.7 47T™M 74G - -
MaskFormer [10] 46.7 42M 55G - -
SegFormer-B2 [45] 46.5 28M 62G 2.6s 1.0x
EfficientViT-B3 (r384) 48.0 39M 12G 0.45s 5.8x
HRFormer-B [49] 48.7 56M 280G - -
SegNeXt-B [17] 48.5 28M 35G 2.2s 1.0x
EfficientViT-B3 (r512) 49.0 39M 22G 0.80s 2.8x

EfficientViT-B2 requires 2.7x fewer MACs and runs 5.2x
faster than SegNeXt-S.

4. Related Work

Semantic Segmentation. Semantic segmentation targets
producing a class prediction for each pixel given the in-
put image. It can be viewed as an extension of image
classification from per-image prediction to per-pixel pre-
dictions. Since the groundbreaking work FCN [3 1], which
designs a fully convolutional neural network for end-to-
end pixel-to-pixel prediction, extensive studies have been
done to improve the performance for semantic segmenta-
tion [1, 36,47, 52, 48, 42].

In addition, there are also some works targeting im-
proving the efficiency of semantic segmentation models
[51, 35, 27, 46, 50]. Representative examples include IC-
Net [51], DFANet [27], BiSeNet [46], etc. While these
models provide good efficiency, their performances are far
behind SOTA semantic segmentation models, especially on
the challenging Cityscapes dataset.

Compared to these works, our models provide a bet-
ter trade-off between performance and efficiency by en-
abling a global receptive field and multi-scale learning with
lightweight operations.

Efficient Vision Transformer. While ViT provides im-
pressive performances in the high-computation region, it is
usually inferior to previous efficient CNNs [39, 24, 5, 18]
when targeting the low-computation region. To close the
gap, MobileViT [33] proposes to combine the strength of
CNN and ViT by replacing local processing in convolu-
tions with global processing using transformers. Mobile-

Former [8] proposes to parallelize MobileNet and Trans-
former with a two-way bridge in between for feature fus-
ing. NASVIT [16] proposes to leverage neural architecture
search to search for efficient ViT architectures.

However, these models mainly focus on image classifi-
cation and still rely on self-attention with quadratic compu-
tational complexity, thus unsuitable for on-device semantic
segmentation.

Efficient Deep Learning. Our work is also related to effi-
cient deep learning, which aims at improving the efficiency
of deep neural networks so that we can deploy them on
hardware platforms with limited resources, such as mobile
phones and IoT devices. Typical technologies in efficient
deep learning include network pruning [20, 22, 28], quanti-
zation [ 19], efficient model architecture design [25, 32], and
training techniques [23, 4]. In addition to manual designs,
many recent works use AutoML techniques [54, 3, 6] to au-
tomatically design [5], prune [21] and quantize [44] neural
networks.

5. Conclusion

In this work, we studied efficient architecture design
for on-device semantic segmentation. We introduced a
lightweight multi-scale attention module that simultane-
ously achieves a global receptive field, and multi-scale
learning with lightweight and hardware-efficient opera-
tions, thus providing significant speedup on edge devices
without performance loss than SOTA semantic segmenta-
tion models. For future work, we will explore applying Ef-
ficientViT to other vision tasks and further scaling up our
EfficientViT models.
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